Assays for Determining Repeat Number, Methylation Status, and AGG Interruptions in the Fragile X-Related Disorders

Author(s):  
Bruce E. Hayward ◽  
Karen Usdin
2014 ◽  
Vol 5 ◽  
Author(s):  
Gary J. Latham ◽  
Justine Coppinger ◽  
Andrew G. Hadd ◽  
Sarah L. Nolin

1996 ◽  
Vol 43 (2) ◽  
pp. 383-388
Author(s):  
M Milewski ◽  
M Zygulska ◽  
J Bal ◽  
W H Deelen ◽  
E Obersztyn ◽  
...  

The unstable DNA sequence in the FMR1 gene was analyzed in 85 individuals from Polish families with fragile X syndrome in order to characterize mutations responsible for the disease in Poland. In all affected individuals classified on the basis of clinical features and expression of the fragile site at X(q27.3) a large expansion of the unstable sequence (full mutation) was detected. About 5% (2 of 43) of individuals with full mutation did not express the fragile site. Among normal alleles, ranging in size from 20 to 41 CGG repeats, allele with 29 repeats was the most frequent (37%). Transmission of premutated and fully mutated alleles to the offspring was always associated with size increase. No change in repeat number was found when normal alleles were transmitted.


Diagnostics ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1780
Author(s):  
Mark Roth ◽  
Lucienne Ronco ◽  
Diego Cadavid ◽  
Blythe Durbin-Johnson ◽  
Randi J. Hagerman ◽  
...  

Fragile X syndrome (FXS) is the most common form of inherited intellectual disability. FXS is an X-linked, neurodevelopmental disorder caused by a CGG trinucleotide repeat expansion in the 5′ untranslated region (UTR) of the Fragile X Mental Retardation gene, FMR1. Greater than 200 CGG repeats results in epigenetic silencing of the gene leading to the deficiency or absence of Fragile X mental retardation protein (FMRP). The loss of FMRP is considered the root cause of FXS. The relationship between neurological function and FMRP expression in peripheral blood mononuclear cells (PBMCs) has not been well established. Assays to detect and measure FMR1 and FMRP have been described; however, none are sufficiently sensitive, precise, or quantitative to properly characterize the relationships between cognitive ability and CGG repeat number, FMR1 mRNA expression, or FMRP expression measured in PBMCs. To address these limitations, two novel immunoassays were developed and optimized, an electro-chemiluminescence immunoassay and a multiparameter flow cytometry assay. Both assays were performed on PMBCs isolated from 27 study participants with FMR1 CGG repeats ranging from normal to full mutation. After correcting for methylation, a significant positive correlation between CGG repeat number and FMR1 mRNA expression levels and a significant negative correlation between FMRP levels and CGG repeat expansion was observed. Importantly, a high positive correlation was observed between intellectual quotient (IQ) and FMRP expression measured in PBMCs.


2012 ◽  
Vol 98 (3) ◽  
pp. S201
Author(s):  
K.E. Wright ◽  
P.D. O'Toole ◽  
N.S. John ◽  
J.R. Stelling ◽  
M.A. Bray

Sign in / Sign up

Export Citation Format

Share Document