spinocerebellar ataxia type
Recently Published Documents


TOTAL DOCUMENTS

1810
(FIVE YEARS 513)

H-INDEX

72
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Vasileios Toulis ◽  
Ricardo Casaroli-Marano ◽  
Anna Camos-Carreras ◽  
Marc Figueras-Roca ◽  
Bernardo Sanchez-Dalmau ◽  
...  

Spinocerebellar ataxia type 3 is an autosomal dominant neurodegenerative disorder caused by expansion of a polyglutamine (polyQ)-encoding CAG repeat in the ATXN3 gene. Because the ATXN3 protein regulates photoreceptor ciliogenesis and phagocytosis, we aimed to explore whether expanded polyQ ATXN3 impacts retinal function and integrity in SCA3 patients and transgenic mice. We evaluated the retinal structure and function in five patients with Spinocerebellar ataxia type 3 and in a transgenic mouse model of this disease (YACMJD84.2, Q84) using, respectively, optical coherence tomography (OCT) and electroretinogram (ERG). We further determined in the transgenic mice: a) the retinal expression pattern of ATXN3 and assessed the distribution of cones and rods by immunofluorescence (IF); and b) the retinal ultrastructure by transmission electron microscopy (TEM). Some patients with Spinocerebellar ataxia type 3 in our cohort revealed: i) reduced central macular thickness indirectly correlated with disease duration; ii) decreased thickness of the macula and the ganglion cell layer, and reduced macula volume inversely correlated with disease severity (SARA score); and iii) electrophysiological dysfunction of cones, rods, and inner retinal cells. Transgenic mice replicated the human OCT and ERG findings with aged homozygous Q84/Q84 mice showing a stronger phenotype accompanied by further thinning of the outer nuclear layer and photoreceptor layer and highly reduced cone and rod activities, thus supporting severe retinal dysfunction in these mice. In addition, Q84 mice showed progressive accumulation of ATXN3-positive aggregates throughout several retinal layers and depletion of cones alongside the disease course. TEM analysis of aged Q84/Q84 mouse retinas supported the IF ATXN3 aggregation findings by revealing the presence of high number of negative electron dense puncta in ganglion cells, inner plexiform and inner nuclear layers, and further showed thinning of the outer plexiform layer, thickening of the retinal pigment epithelium and elongation of apical microvilli. Our results indicate that retinal alterations detected by non-invasive eye examination using OCT and ERG could represent a biological marker of disease progression and severity in patients with Spinocerebellar ataxia type 3.


Author(s):  
Shuo Guo ◽  
Huiyu Zhong ◽  
Bi Zhao ◽  
Dan Yang ◽  
Zirui Meng ◽  
...  

2021 ◽  
Author(s):  
Flávio Moura Rezende Filho ◽  
Neringa Jurkute ◽  
João Brainer Clares Andrade ◽  
Bruna Ferraço Marianelli ◽  
Juliana M. Ferraz Sallum ◽  
...  

2021 ◽  
Author(s):  
Garam Kim ◽  
Lisa Nakayama ◽  
Jacob A Blum ◽  
Tetsuya Akiyama ◽  
Steven Boeynaems ◽  
...  

Antisense oligonucleotide therapy targeting ATXN2, a gene in which mutations cause neurodegenerative diseases spinocerebellar ataxia type 2 and amyotrophic lateral sclerosis, has entered clinical trials in humans. Additional methods to lower ataxin 2 levels would be beneficial not only in uncovering potentially cheaper or less invasive therapies, but also in gaining greater mechanistic insight into how ataxin 2 is normally regulated. We performed a genome-wide fluorescence activated cell sorting (FACS)-based CRISPR screen in human cells and identified multiple subunits of the lysosomal vacuolar ATPase (v ATPase) as regulators of ataxin 2 levels. We demonstrate that Etidronate, a U.S. Food and Drug Administration (FDA)-approved drug that inhibits the v ATPase, lowers ataxin 2 protein levels in mouse and human neurons. Moreover, oral administration of the drug to mice in their water supply and food is sufficient to lower ataxin-2 levels in the brain. Thus, we uncover Etidronate as a safe and inexpensive compound for lowering ataxin-2 levels and demonstrate the utility of FACS-based screens for identifying targets to modulate levels of human disease proteins.


Life ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 3
Author(s):  
Agnieszka Ługowska ◽  
Joanna K. Purzycka-Olewiecka ◽  
Rafał Płoski ◽  
Grażyna Truszkowska ◽  
Maciej Pronicki ◽  
...  

We report on a 36-year-old man with cerebellar-extrapyramidal syndrome and severe heart failure because of dilated cardiomyopathy of unknown origin. Dysarthria and cardiac arrhythmia began at early childhood (4 years of age). Brain MRI (28 years of age) demonstrated severe cerebellar atrophy. At the age 32, he presented with dysarthria, ataxia, dystonia, and tremor of the right hand, bilateral slowed neural conduction in the visual pathways, and decreased mental acuity. At the age of 33 years, the patient underwent cardiac transplantation because of severe dilated cardiomyopathy. In the TPP1 gene, biallelic variants were identified: previously reported p.(Leu13Pro) and novel p.(Tyr508Cys) variant. Additionally, hemizygous novel missense variant in the ABCD1 gene was inherited from the mother p.(Arg17His). Normal very-long-chain fatty acids (VLCFA) levels both in patient and his mother excluded ABCD1 mutation as the pathogenic one. Tripeptidyl peptidase 1 (TPP1) activity was reduced (8,8 U/mg protein/h; reference range: 47.4 ± 10.7). In light microscopy the biopsy specimens obtained from explanted heart showed severe myocyte hypertrophy with perinuclear vacuolization with inclusions. Electron microscopy revealed absence of lipofuscin accumulation, no ultrastructural curvilinear profiles, fingerprint bodies, or granular osmiophilic deposits (GRODs) in lysosomes. As described here, the patient presents clinical symptoms observed in benign forms of ceroid lipofuscinosis type 2 (CLN2) and simultaneously some features of autosomal recessive spinocerebellar ataxia type 7 (SCAR7), which is also caused by mutations in the TPP1 gene.


Sign in / Sign up

Export Citation Format

Share Document