The Adaptive Path Collective Variable: A Versatile Biasing Approach to Compute the Average Transition Path and Free Energy of Molecular Transitions

Author(s):  
Alberto Pérez de Alba Ortíz ◽  
Jocelyne Vreede ◽  
Bernd Ensing
2021 ◽  
Author(s):  
Curtis Goolsby ◽  
Ashkan Fakharzadeh ◽  
Mahmoud Moradi

AbstractWe have formulated a Riemannian framework for describing the geometry of collective variable spaces of biomolecules within the context of molecular dynamics (MD) simulations. The formalism provides a theoretical framework to develop enhanced sampling techniques, path-finding algorithms, and transition rate estimators consistent with a Riemannian treatment of the collective variable space, where the quantities of interest such as the potential of mean force (PMF) and minimum free energy path (MFEP) remain invariant under coordinate transformation. Specific algorithms within this framework are discussed such as the Riemannian umbrella sampling, the Riemannian string method, and a Riemannian-Bayesian estimator of free energy and diffusion constant, which can be used to estimate the transition rate along an MFEP.


2016 ◽  
Vol 195 ◽  
pp. 395-419 ◽  
Author(s):  
Mike O'Connor ◽  
Emanuele Paci ◽  
Simon McIntosh-Smith ◽  
David R. Glowacki

The past decade has seen the development of a new class of rare event methods in which molecular configuration space is divided into a set of boundaries/interfaces, and then short trajectories are run between boundaries. For all these methods, an important concern is how to generate boundaries. In this paper, we outline an algorithm for adaptively generating boundaries along a free energy surface in multi-dimensional collective variable (CV) space, building on the boxed molecular dynamics (BXD) rare event algorithm. BXD is a simple technique for accelerating the simulation of rare events and free energy sampling which has proven useful for calculating kinetics and free energy profiles in reactive and non-reactive molecular dynamics (MD) simulations across a range of systems, in both NVT and NVE ensembles. Two key developments outlined in this paper make it possible to automate BXD, and to adaptively map free energy and kinetics in complex systems. First, we have generalized BXD to multidimensional CV space. Using strategies from rigid-body dynamics, we have derived a simple and general velocity-reflection procedure that conserves energy for arbitrary collective variable definitions in multiple dimensions, and show that it is straightforward to apply BXD to sampling in multidimensional CV space so long as the Cartesian gradients ∇CV are available. Second, we have modified BXD to undertake on-the-fly statistical analysis during a trajectory, harnessing the information content latent in the dynamics to automatically determine boundary locations. Such automation not only makes BXD considerably easier to use; it also guarantees optimal boundaries, speeding up convergence. We have tested the multidimensional adaptive BXD procedure by calculating the potential of mean force for a chemical reaction recently investigated using both experimental and computational approaches – i.e., F + CD3CN → DF + D2CN in both the gas phase and a strongly coupled explicit CD3CN solvent. The results obtained using multidimensional adaptive BXD agree well with previously published experimental and computational results, providing good evidence for its reliability.


2015 ◽  
Vol 43 (2) ◽  
pp. 157-161 ◽  
Author(s):  
Polina V. Banushkina ◽  
Sergei V. Krivov

The free energy landscape can provide a quantitative description of folding dynamics, if determined as a function of an optimally chosen reaction coordinate. The profile together with the optimal coordinate allows one to directly determine such basic properties of folding dynamics as the configurations of the minima and transition states, the heights of the barriers, the value of the pre-exponential factor and its relation to the transition path times. In the present study, we review the framework, in particular, the approach to determine such an optimal coordinate, and its application to the analysis of simulated protein folding dynamics.


2012 ◽  
Vol 102 (3) ◽  
pp. 217a-218a
Author(s):  
Hoi Sung Chung ◽  
Irina V. Gopich ◽  
Kevin McHale ◽  
John M. Louis ◽  
William A. Eaton

2019 ◽  
Author(s):  
Curtis Goolsby ◽  
Ashkan Fakharzadeh ◽  
Mahmoud Moradi

AbstractWe have formulated a Riemannian framework for describing the geometry of collective variable spaces of biomolecules within the context of collective variable based molecular dynamics simulations. The formalism provides a theoretical framework to develop enhanced sampling techniques, path-finding algorithms, and transition rate estimators consistent with a Riemannian treatment of the collective variable space, where the quantities of interest such as the potential of the mean force, minimum free energy path, the diffusion constant, and the transition rate remain invariant under coordinate transformation due to the Riemannian treatment of the collective variable space. Specific algorithms within this framework are discussed such as the Riemannian umbrella sampling, the Riemannian string method, and a Riemannian-Bayesian estimator of free energy and diffusion constant, which can be used to estimate the transition rate along a minimum free energy path.


Sign in / Sign up

Export Citation Format

Share Document