Osteogenic Sarcoma and Dedifferentiated Chondrosarcoma

Author(s):  
David Y. Johnson ◽  
Shilpi Wadhwa ◽  
Frank E. Johnson
Author(s):  
Gerald Fine ◽  
Azorides R. Morales

For years the separation of carcinoma and sarcoma and the subclassification of sarcomas has been based on the appearance of the tumor cells and their microscopic growth pattern and information derived from certain histochemical and special stains. Although this method of study has produced good agreement among pathologists in the separation of carcinoma from sarcoma, it has given less uniform results in the subclassification of sarcomas. There remain examples of neoplasms of different histogenesis, the classification of which is questionable because of similar cytologic and growth patterns at the light microscopic level; i.e. amelanotic melanoma versus carcinoma and occasionally sarcoma, sarcomas with an epithelial pattern of growth simulating carcinoma, histologically similar mesenchymal tumors of different histogenesis (histiocytoma versus rhabdomyosarcoma, lytic osteogenic sarcoma versus rhabdomyosarcoma), and myxomatous mesenchymal tumors of diverse histogenesis (myxoid rhabdo and liposarcomas, cardiac myxoma, myxoid neurofibroma, etc.)


Author(s):  
G. Kasnic ◽  
S. E. Stewart ◽  
C. Urbanski

We have reported the maturation of an intracisternal A-type particle in murine plasma cell tumor cultures and three human tumor cell cultures (rhabdomyosarcoma, lung adenocarcinoma, and osteogenic sarcoma) after IUDR-DMSO activation. In all of these studies the A-type particle seems to develop into a form with an electron dense nucleoid, presumably mature, which is also intracisternal. A similar intracisternal A-type particle has been described in leukemic guinea pigs. Although no biological activity has yet been demonstrated for these particles, on morphologic grounds, and by the manner in which they develop within the cell, they may represent members of the same family of viruses.


Skull Base ◽  
2007 ◽  
Vol 17 (S 1) ◽  
Author(s):  
Il Young Shin ◽  
Yong Gu Chung ◽  
Dong Huyk Park ◽  
Hoon Gab Lee

1991 ◽  
Vol 27 (5) ◽  
pp. 715
Author(s):  
Goo Lee ◽  
In One Kim ◽  
Kyung Mo Yeon ◽  
Hyun Ki Yoon ◽  
Hyo Seop Ahn

1967 ◽  
Vol 99 (2) ◽  
pp. 326-332 ◽  
Author(s):  
CARL W. BOYER ◽  
THEODORE J. BRICKNER ◽  
GARY P. WRATTEN
Keyword(s):  

1995 ◽  
Vol 14 (2) ◽  
pp. 263-275 ◽  
Author(s):  
D M Thomas ◽  
S D Rogers ◽  
M W Sleeman ◽  
G M Pasquini ◽  
F R Bringhurst ◽  
...  

ABSTRACT This study characterizes the actions of insulin and parathyroid hormone (PTH) on the glucose transport system in the rat osteogenic sarcoma cell line UMR 106–01, which expresses a number of features of the osteoblast phenotype. Using [1,2-3H]2-deoxyglucose (2-DOG) as a label, UMR 106–01 cells were shown to possess a glucose transport system which was enhanced by insulin. In contrast, PTH influenced glucose transport in a biphasic manner with a stimulatory effect at 1 h and a more potent inhibitory effect at 16 h on basal and insulin-stimulated 2-DOG transport. To explore the mechanism of PTH action, a direct agonist of cAMP-dependent protein kinase (PKA) was tested. 8-Bromo-cAMP had no acute stimulatory effect but inhibited basal and insulin-stimulated 2-DOG transport at 16 h. This result suggested that the prolonged, but not the acute, effect of PTH was mediated by the generation of cAMP. Further studies with the cell line UMR 4–7, a UMR 106–01 clone stably transfected with an inducible mutant inactive regulatory subunit of PKA, confirmed that the inhibitory but not the stimulatory effect of PTH was mediated by the PKA pathway. Northern blot data indicated that the prolonged inhibitory effects of PTH and 8-bromo-cAMP on glucose transport were likely to be mediated in part by reduction in the levels of GLUT1 (HepG2/brain glucose transporter) mRNA.


1983 ◽  
Vol 36 (5) ◽  
pp. 516-523 ◽  
Author(s):  
Joe B. Putnam ◽  
Jack A. Roth ◽  
Margaret N. Wesley ◽  
Michael R. Johnston ◽  
Steven A. Rosenberg

Sign in / Sign up

Export Citation Format

Share Document