Practical Aspects in Expression and Purification of Membrane Proteins for Structural Analysis

Author(s):  
Kutti R. Vinothkumar ◽  
Patricia C. Edwards ◽  
Joerg Standfuss
2021 ◽  
Vol 28 ◽  
Author(s):  
Chen-Yan china Zhang ◽  
Shi-Qi Zhao ◽  
Shi-Long Zhang ◽  
Li-Heng Luo ◽  
Ding-Chang Liu ◽  
...  

: Membrane proteins are crucial for biological processes, and many of them are important to drug targets. Understanding the three-dimensional structures of membrane proteins are essential to evaluate their bio function and drug design. High-purity membrane proteins are important for structural determination. Membrane proteins have low yields and are difficult to purify because they tend to aggregate. We summarized membrane protein expression systems, vectors, tags, and detergents, which have deposited in the Protein Data Bank (PDB) in recent four-and-a-half years. Escherichia coli is the most expression system for membrane proteins, and HEK293 cells are the most commonly cell lines for human membrane protein expression. The most frequently vectors are pFastBac1 for alpha-helical membrane proteins, pET28a for beta-barrel membrane proteins, and pTRC99a for monotopic membrane proteins. The most used tag for membrane proteins is the 6×His-tag. FLAG commonly used for alpha-helical membrane proteins, Strep and GST for beta-barrel and monotopic membrane proteins, respectively. The detergents and their concentrations used for alpha-helical, beta-barrel, and monotopic membrane proteins are different, and DDM is commonly used for membrane protein purification. It can guide the expression and purification of membrane proteins, thus contributing to their structure and bio function studying.


2002 ◽  
Vol 3 (6) ◽  
pp. 511-517 ◽  
Author(s):  
Isabelle Mus-Veteau

Membrane proteins (MPs) are responsible for the interface between the exterior and the interior of the cell. These proteins are implicated in numerous diseases, such as cancer, cystic fibrosis, epilepsy, hyperinsulinism, heart failure, hypertension and Alzheimer's disease. However, studies on these disorders are hampered by a lack of structural information about the proteins involved. Structural analysis requires large quantities of pure and active proteins. The majority of medically and pharmaceutically relevant MPs are present in tissues at very low concentration, which makes heterologous expression in large-scale production-adapted cells a prerequisite for structural studies. Obtaining mammalian MP structural data depends on the development of methods that allow the production of large quantities of MPs. This review focuses on the different heterologous expression systems, and the purification strategies, used to produce large amounts of pure mammalian MPs for structural proteomics.


2009 ◽  
Vol 11 (1) ◽  
pp. 81-84 ◽  
Author(s):  
Lili Mao ◽  
S. Thangminlal Vaiphei ◽  
Tsutomu Shimazu ◽  
William M. Schneider ◽  
Yuefeng Tang ◽  
...  

2001 ◽  
Vol 41 (supplement) ◽  
pp. S18
Author(s):  
K. Murata

2004 ◽  
Vol 10 (5-6) ◽  
pp. 393-398 ◽  
Author(s):  
Pranab K. Mohapatra ◽  
Adikanda Khamari ◽  
Mukesh K. Raval

Sign in / Sign up

Export Citation Format

Share Document