Comparative and Functional Genomics
Latest Publications


TOTAL DOCUMENTS

557
(FIVE YEARS 0)

H-INDEX

39
(FIVE YEARS 0)

Published By Hindawi Limited

1532-6268, 1531-6912

2012 ◽  
Vol 2012 ◽  
pp. 1-2
Author(s):  
Greco Hernández

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Yan Gao ◽  
Songguang Yang ◽  
Lianyu Yuan ◽  
Yuhai Cui ◽  
Keqiang Wu

Chromatin-remodeling complexes affect gene expression by using the energy of ATP hydrolysis to locally disrupt or alter the association of histones with DNA. SWIRM (Swi3p, Rsc8p, and Moira) domain is an alpha-helical domain of about 85 residues in chromosomal proteins. SWIRM domain-containing proteins make up large multisubunit complexes by interacting with other chromatin modification factors and may have an important function in plants. However, little is known about SWIRM domain-containing proteins in plants. In this study, 67 SWIRM domain-containing proteins from 6 plant species were identified and analyzed. Plant SWIRM domain proteins can be divided into three distinct types: Swi-type, LSD1-type, and Ada2-type. Generally, the SWIRM domain forms a helix-turn-helix motif commonly found in DNA-binding proteins. The genes encoding SWIRM domain proteins inOryza sativaare widely expressed, especially in pistils. In addition,OsCHB701andOsHDMA701were downregulated by cold stress, whereasOsHDMA701andOsHDMA702were significantly induced by heat stress. These observations indicate that SWIRM domain proteins may play an essential role in plant development and plant responses to environmental stress.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Greco Hernández ◽  
Christopher G. Proud ◽  
Thomas Preiss ◽  
Armen Parsyan

Diversity is one of the most remarkable features of living organisms. Current assessments of eukaryote biodiversity reaches 1.5 million species, but the true figure could be several times that number. Diversity is ingrained in all stages and echelons of life, namely, the occupancy of ecological niches, behavioral patterns, body plans and organismal complexity, as well as metabolic needs and genetics. In this review, we will discuss that diversity also exists in a key biochemical process, translation, across eukaryotes. Translation is a fundamental process for all forms of life, and the basic components and mechanisms of translation in eukaryotes have been largely established upon the study of traditional, so-called model organisms. By using modern genome-wide, high-throughput technologies, recent studies of many nonmodel eukaryotes have unveiled a surprising diversity in the configuration of the translation apparatus across eukaryotes, showing that this apparatus is far from being evolutionarily static. For some of the components of this machinery, functional differences between different species have also been found. The recent research reviewed in this article highlights the molecular and functional diversification the translational machinery has undergone during eukaryotic evolution. A better understanding of all aspects of organismal diversity is key to a more profound knowledge of life.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Hao Yang ◽  
Haiyang Zhang ◽  
Lin Zhu ◽  
Chenyu Zhang ◽  
Donghai Li

MicroRNAs (miRNAs) are small noncoding RNAs which repress gene expression at the posttranscriptional level. In this study, an expressed sequence tag (EST)-based combined method was applied for the detection of miRNAs inMacaca fasciculariswhich is used as a model animal extensively in medical experiments, particularly those involved with neuroscience and disease. Initially, previously known miRNA sequences from metazoans were used to blast with the EST databases ofMacaca fascicularis, and then a range of filtering criteria was conducted to remove some pseudo ones. At last a total of 8 novel conserved miRNAs were identified; their functions were further predicted and analyzed. Together, our study provides insight into miRNAs and their functions inMacaca fascicularis, indicating that the EST analysis is an efficient and affordable alternative approach for identifying novel miRNA candidates.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Godfrey Grech ◽  
Marieke von Lindern

Organisation of RNAs into functional subgroups that are translated in response to extrinsic and intrinsic factors underlines a relatively unexplored gene expression modulation that drives cell fate in the same manner as regulation of the transcriptome by transcription factors. Recent studies on the molecular mechanisms of inflammatory responses and haematological disorders indicate clearly that the regulation of mRNA translation at the level of translation initiation, mRNA stability, and protein isoform synthesis is implicated in the tight regulation of gene expression. This paper outlines how these posttranscriptional control mechanisms, including control at the level of translation initiation factors and the role of RNA binding proteins, affect hematopoiesis. The clinical relevance of these mechanisms in haematological disorders indicates clearly the potential therapeutic implications and the need of molecular tools that allow measurement at the level of translational control. Although the importance of miRNAs in translation control is well recognised and studied extensively, this paper will exclude detailed account of this level of control.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Xin Du ◽  
Leng Han ◽  
An-Yuan Guo ◽  
Zhongming Zhao

CpG islands are typically located in the 5′end of genes and considered as gene markers because they play important roles in gene regulation via epigenetic change. In this study, we compared the features of CpG islands identified by several major algorithms by setting the parameter cutoff values in order to obtain a similar number of CpG islands in a genome. This approach allows us to systematically compare the methylation and gene expression patterns in the identified CpG islands. We found that Takai and Jones’ algorithm tends to identify longer CpG islands but with weaker CpG island features (e.g., lower GC content and lower ratio of the observed over expected CpGs) and higher methylation level. Conversely, the CpG clusters identified by Hackenberg et al.’s algorithm using stringent criteria are shorter and have stronger features and lower methylation level. In addition, we used the genome-wide base-resolution methylation profile in two cell lines to show that genes with a lower methylation level at the promoter-associated CpG islands tend to express in more tissues and have stronger expression. Our results validated that the DNA methylation of promoter-associated CpG islands suppresses gene expression at the genome level.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Gritta Tettweiler ◽  
Michelle Kowanda ◽  
Paul Lasko ◽  
Nahum Sonenberg ◽  
Greco Hernández

Insects are part of the earliest faunas that invaded terrestrial environments and are the first organisms that evolved controlled flight. Nowadays, insects are the most diverse animal group on the planet and comprise the majority of extant animal species described. Moreover, they have a huge impact in the biosphere as well as in all aspects of human life and economy; therefore understanding all aspects of insect biology is of great importance. In insects, as in all cells, translation is a fundamental process for gene expression. However, translation in insects has been mostly studied only in the model organismDrosophila melanogaster. We used all publicly available genomic sequences to investigate in insects the distribution of the genes encoding the cap-binding proteineIF4E, a protein that plays a crucial role in eukaryotic translation. We found that there is a diversity of multiple ortholog genes encoding eIF4E isoforms within the genusDrosophila. In striking contrast, insects outside this genus contain only a singleeIF4Egene, related toD. melanogastereIF4E-1. We also found that all insect species here analyzed contain only one Class II gene, termed4E-HP. We discuss the possible evolutionary causes originating the multiplicity ofeIF4Egenes within the genusDrosophila.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Yoshiaki Ito ◽  
Tomohiro Kayama ◽  
Hiroshi Asahara

Skeletal myogenesis depends on the strict regulation of the expression of various gene subsets. Therefore, the understanding of genome wide gene regulation is imperative for elucidation of skeletal myogenesis. In recent years, systems approach has contributed to the understanding of various biological processes. Our group recently revealed the critical genome network of skeletal myogenesis by using a novel systems approach combined with whole-mountin situhybridization (WISH) database, high-throughput screening, and microarray analysis. In this paper, we introduce our systems approach for understanding the myogenesis regulatory network and describe the advantages of systems approach.


2012 ◽  
Vol 2012 ◽  
pp. 1-8
Author(s):  
Yanping Quan ◽  
Guangqiang Liu ◽  
Wei Yu ◽  
Zuoming Nie ◽  
Jian Chen ◽  
...  

The Ras subfamily is the member of small G proteins superfamily involved in cellular signal transduction. Activation of Ras signaling causes cell growth, differentiation, and survival.Bombyx moriRas-like protein (BmRas1) may belong to the Ras subfamily. It contained an H-N-K-Ras-like domain. The BmRas1 mRNA consisted of 1459 bp. The open reading frame contained 579 bp, encoding 192 amino acids. The protein had such secondary structures asα-helices, extended strand, and random coil. BmRas1 was expressed successfully inE. coliBL21. The recombinant protein was purified with metal-chelating affinity chromatography. The GTPase activity of purified protein was determined by FeSO4-(NH4)2MoO4assay. The results showed that purified recombinant protein had intrinsic activity of GTPase. High titer polyclonal antibodies were generated by New Zealand rabbit immunized with purified protein. The gene expression features of BmRas1 at different stages and in different organs of the fifth instar larvae were analyzed by Western blot. The results showed that BmRas1 was expressed highly in three development stages including egg, pupae, and adult, but low expression in larva. BmRas1 was expressed in these tissues including head, malpighian tubule, genital gland, and silk gland. The purified recombinant protein would be utilized to further function studies of BmRas1.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Chiara Lanzuolo

Epigenetic mechanisms, acting via chromatin organization, fix in time and space different transcriptional programs and contribute to the quality, stability, and heritability of cell-specific transcription programs. In the last years, great advances have been made in our understanding of mechanisms by which this occurs in normal subjects. However, only a small part of the complete picture has been revealed. Abnormal gene expression patterns are often implicated in the development of different diseases, and thus epigenetic studies from patients promise to fill an important lack of knowledge, deciphering aberrant molecular mechanisms at the basis of pathogenesis and diseases progression. The identification of epigenetic modifications that could be used as targets for therapeutic interventions could be particularly timely in the light of pharmacologically reversion of pathological perturbations, avoiding changes in DNA sequences. Here I discuss the available information on epigenetic mechanisms that, altered in neuromuscular disorders, could contribute to the progression of the disease.


Sign in / Sign up

Export Citation Format

Share Document