Imaging and Quantification of Recycled KATP Channels

Author(s):  
Christopher J. Cockcroft
Keyword(s):  
Author(s):  
Ada Admin ◽  
Michelle Carey ◽  
Eric Lontchi-Yimagou ◽  
William Mitchell ◽  
Sarah Reda ◽  
...  

Hyperglycemia is a potent regulator of endogenous glucose production (EGP). Loss of this ‘glucose effectiveness’ is a major contributor to elevated plasma glucose concentrations in type 2 diabetes (T2D). ATP-sensitive potassium channels (K<sub>ATP</sub> channels) in the central nervous system (CNS) have been shown to regulate EGP in humans and rodents. We examined the contribution of central K<sub>ATP</sub> channels to glucose effectiveness. Under fixed hormonal conditions (‘pancreatic clamp’ studies), hyperglycemia suppressed EGP by ~50% in both non-diabetic humans and normal Sprague Dawley rats. By contrast, antagonism of K<sub>ATP</sub> channels with glyburide significantly reduced the EGP-lowering effect of hyperglycemia in both humans and rats. Furthermore, the effects of glyburide on EGP and gluconeogenic enzymes in rats were abolished by intracerebroventricular (ICV) administration of the KATP channel agonist diazoxide. These findings indicate that about half of EGP suppression by hyperglycemia is mediated by central K<sub>ATP</sub> channels. These central mechanisms may offer a novel therapeutic target for improving glycemic control in T2D.


2004 ◽  
Vol 101 (2) ◽  
pp. 390-398 ◽  
Author(s):  
Takashi Kawano ◽  
Shuzo Oshita ◽  
Akira Takahashi ◽  
Yasuo Tsutsumi ◽  
Yoshinobu Tomiyama ◽  
...  

Background Sarcolemmal adenosine triphosphate-sensitive potassium (KATP) channels in the cardiovascular system may be involved in bupivacaine-induced cardiovascular toxicity. The authors investigated the effects of local anesthetics on the activity of reconstituted KATP channels encoded by inwardly rectifying potassium channel (Kir6.0) and sulfonylurea receptor (SUR) subunits. Methods The authors used an inside-out patch clamp configuration to investigate the effects of bupivacaine, levobupivacaine, and ropivacaine on the activity of reconstituted KATP channels expressed in COS-7 cells and containing wild-type, mutant, or chimeric SURs. Results Bupivacaine inhibited the activities of cardiac KATP channels (IC50 = 52 microm) stereoselectively (levobupivacaine, IC50 = 168 microm; ropivacaine, IC50 = 249 microm). Local anesthetics also inhibited the activities of channels formed by the truncated isoform of Kir6.2 (Kir6.2 delta C36) stereoselectively. Mutations in the cytosolic end of the second transmembrane domain of Kir6.2 markedly decreased both the local anesthetics' affinity and stereoselectivity. The local anesthetics blocked cardiac KATP channels with approximately eightfold higher potency than vascular KATP channels; the potency depended on the SUR subtype. The 42 amino acid residues at the C-terminal tail of SUR2A, but not SUR1 or SUR2B, enhanced the inhibitory effect of bupivacaine on the Kir6.0 subunit. Conclusions Inhibitory effects of local anesthetics on KATP channels in the cardiovascular system are (1) stereoselective: bupivacaine was more potent than levobupivacaine and ropivacaine; and (2) tissue specific: local anesthetics blocked cardiac KATP channels more potently than vascular KATP channels, via the intracellular pore mouth of the Kir6.0 subunit and the 42 amino acids at the C-terminal tail of the SUR2A subunit, respectively.


2021 ◽  
pp. 113467
Author(s):  
Gerald Sakamaki ◽  
Kayla Johnson ◽  
Megan Mensinger ◽  
Eindray Hmu ◽  
Amanda H. Klein

2006 ◽  
Vol 290 (2) ◽  
pp. H830-H836 ◽  
Author(s):  
Karin Przyklenk ◽  
Michelle Maynard ◽  
Peter Whittaker

Prophylactic treatment with d- myo-inositol 1,4,5-trisphosphate hexasodium [d- myo-Ins(1,4,5)P3], the sodium salt of the endogenous second messenger Ins(1,4,5)P3, triggers a reduction of infarct size comparable in magnitude to that seen with ischemic preconditioning (PC). However, the mechanisms underlying d- myo-Ins(1,4,5)P3-induced protection are unknown. Accordingly, our aim was to investigate the role of four archetypal mediators implicated in PC and other cardioprotective strategies (i.e., PKC, PI3-kinase/Akt, and mitochondrial and/or sarcolemmal KATP channels) in the infarct-sparing effect of d- myo-Ins(1,4,5)P3. Fifteen groups of isolated buffer-perfused rabbit hearts [5 treated with d- myo-Ins(1,4,5)P3, 5 treated with PC, and 5 control cohorts] underwent 30 min of coronary artery occlusion and 2 h of reflow. One set of control, d- myo-Ins(1,4,5)P3, and PC groups received no additional treatment, whereas the remaining sets were infused with chelerythrine, LY-294002, 5-hydroxydecanoate (5-HD), or HMR-1098 [inhibitors of PKC, PI3-kinase, and mitochondrial and sarcolemmal ATP-sensitive K+ (KATP) channels, respectively]. Infarct size (delineated by tetrazolium staining) was, as expected, significantly reduced in both d- myo-Ins(1,4,5)P3- and PC-treated hearts versus controls. d- myo-Ins(1,4,5)P3-induced cardioprotection was blocked by 5-HD but not HMR-1098, thereby implicating the involvement of mitochondrial, but not sarcolemmal, KATP channels. Moreover, the benefits of d- myo-Ins(1,4,5)P3 were abrogated by LY-294002, whereas, in contrast, chelerythrine had no effect. These latter pharmacological data were corroborated by immunoblotting: d- myo-Ins(1,4,5)P3 evoked a significant increase in expression of phospho-Akt but had no effect on the activation/translocation of the cardioprotective ε-isoform of PKC. Thus PI3-kinase/Akt signaling and mitochondrial KATP channels participate in the reduction of infarct size afforded by prophylactic administration of d- myo-Ins(1,4,5)P3.


Sign in / Sign up

Export Citation Format

Share Document