sulfonylurea receptor
Recently Published Documents


TOTAL DOCUMENTS

320
(FIVE YEARS 28)

H-INDEX

53
(FIVE YEARS 4)

2021 ◽  
Vol 14 ◽  
Author(s):  
Shin-Joe Yeh ◽  
Pang-Hung Hsu ◽  
Ti-Yen Yeh ◽  
Wei-Kang Yang ◽  
Ko-Ping Chang ◽  
...  

Ischemic stroke with a mismatch between diffusion-weighted imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) or T2-weighted images indicates onset within 4.5 h, but the pathological substrates in the DWI-T2 mismatch and T2(+) areas remain elusive. In this study, proteomics was used to explore (1) the protein expression profiles in the T2(+), mismatch, and contralateral areas, and (2) the protein with the highest expression in the T2(+) area in the brains of male Sprague-Dawley rats within 4.5 h after middle cerebral artery occlusion (MCAO). The expression of the candidate protein was further validated in (1) rat brain subjected to MCAO, (2) rat primary cortical neuronal culture with oxygen-glucose deprivation (OGD), and (3) infarcted human brain tissues. This study showed that apoptosis was observed in the T2(+) and mismatch regions and necroptosis in the T2(+) region of rat brains after MCAO. We identified capping protein regulator and myosin 1 linker 3 (CARMIL3) as the candidate molecule in the T2(+) and mismatch areas, exclusively in neurons, predominantly in the cytoplasm, and most abundant in the mismatch area. The CARMIL3(+) neurons and neurites in the mismatch and T2(+) areas were larger than those in the control area, and associated with (1) increased expression of sulfonylurea receptor 1 (SUR1), indicating edema, (2) accumulation of p62, indicating impaired autophagy, and (3) increase in 8-hydroxy-2′-deoxyguanosine (8-OHdG), indicating oxidative stress. The increased expression of CARMIL3 was validated in a cell model of cortical neurons after OGD and in infarcted human brain tissues. In conclusion, this study shows that the mismatch and T2(+) areas within 4.5 h after ischemia are characterized by upregulated expression of CARMIL3 in neurons, particularly the mismatch area, which is associated with neuronal edema, impaired autophagy, and oxidative stress, indicating that CARMIL3 serves as a molecular signature of brain ischemia.


2021 ◽  
Author(s):  
M.S. Shuvalova ◽  
Yu.X-M. Shidakov ◽  
A.S. Shanazarov ◽  
D.Z. Zhanuzakov ◽  
A.B. Mamytova

The features of remodeling of the components of the vascular plexus and the microcirculatory bed of the brain in cerebral ischemia in the highlands are studied, the features of the action of glibenclamide on these structures are presented. It is shown that the sulfonylurea receptor 1 (SUR 1) in the highlands becomes more sensitive to glibenclamide than in the low mountains. Key words: brain, ischemia, glibenclamide, highlands.


2021 ◽  
Vol 118 (48) ◽  
pp. e2112267118
Author(s):  
Chen Zhao ◽  
Roderick MacKinnon

KATP channels are metabolic sensors that translate intracellular ATP/ADP balance into membrane excitability. The molecular composition of KATP includes an inward-rectifier potassium channel (Kir) and an ABC transporter–like sulfonylurea receptor (SUR). Although structures of KATP have been determined in many conformations, in all cases, the pore in Kir is closed. Here, we describe human pancreatic KATP (hKATP) structures with an open pore at 3.1- to 4.0-Å resolution using single-particle cryo-electron microscopy (cryo-EM). Pore opening is associated with coordinated structural changes within the ATP-binding site and the channel gate in Kir. Conformational changes in SUR are also observed, resulting in an area reduction of contact surfaces between SUR and Kir. We also observe that pancreatic hKATP exhibits the unique (among inward-rectifier channels) property of PIP2-independent opening, which appears to be correlated with a docked cytoplasmic domain in the absence of PIP2.


2021 ◽  
Vol 12 (5) ◽  
pp. 6915-6932

Stroke is the leading cause of disability and death worldwide. Inhibition of sulfonylurea 1 receptor (SUR1) using glibenclamide previously has been studied in CNS ischemic tissues and faster recovery from stroke injury in different animal models of stroke. Unfortunately, glibenclamide cannot enter the brain through an intact brain membrane (BBB) due to its ionization at physiological pH. Therefore, it was hypothesized that compounds with structural properties similar to glibenclamide but with the ability to penetrate through BBB would be superior to glibenclamide in ischemic stroke. Docking energy and interactions of glibenclamide with SUR1 active site were assessed using AutoDock Vina. NCI databases search engines with limitations for penetration to CNS were used to find the best compounds with desired properties. Then two selected compounds were assessed with dynamic molecular studies. Two compounds called CID-415537 and CID-419074 with docking energies of -10.3 kcal/mol and -11 kcal/mol were identified. CID-415537 was selected as the best compound due to its proper interactions with SUR1 amino acids and stability in molecular dynamic simulation. Based on this study, compound CID-415537 would be a good candidate for a SUR1 inhibitor in ischemic stroke. However, further in vivo investigations are required to confirm these findings.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0258408
Author(s):  
Erika Gurzeler ◽  
Anna-Kaisa Ruotsalainen ◽  
Anssi Laine ◽  
Teemu Valkama ◽  
Sanna Kettunen ◽  
...  

Background and aims Diabetes is a major risk factor of atherosclerosis and its complications. The loss-of-function mutation E1506K in the sulfonylurea receptor 1 (SUR1-E1506K) induces hyperinsulinemia in infancy, leading to impaired glucose tolerance and increased risk of type 2 diabetes. In this study, we investigate the effect of SUR1-E1506K mutation on atherogenesis in hypercholesterolemic LDLR-/- mice. Methods SUR1-E1506K mutated mice were cross-bred with LDLR-/- mice (SUR1Δ/LDLR-/-), 6 months old mice were fed a western-diet (WD) for 6 months to induce advanced atherosclerotic plaques. At the age of 12 months, atherosclerosis and plaque morphology were analyzed and mRNA gene expression were measured from aortic sections and macrophages. Glucose metabolism was characterized before and after WD. Results were compared to age-matched LDLR-/- mice. Results Advanced atherosclerotic plaques did not differ in size between the two strains. However, in SUR1Δ/LDLR-/- mice, plaque necrotic area was increased and smooth muscle cell number was reduced, resulting in higher plaque vulnerability index in SUR1Δ/LDLR-/- mice compared to LDLR-/- mice. SUR1Δ/LDLR-/- mice exhibited impaired glucose tolerance and elevated fasting glucose after WD. The positive staining area of IL-1β and NLRP3 inflammasome were increased in aortic sections in SUR1Δ/LDLR-/- mice compared to LDLR-/- mice, and IL-18 plasma level was elevated in SUR1Δ/LDLR-/- mice. Finally, the mRNA expression of IL-1β and IL-18 were increased in SUR1Δ/LDLR-/- bone marrow derived macrophages in comparison to LDLR-/- macrophages in response to LPS. Conclusions SUR1-E1506K mutation impairs glucose tolerance and increases arterial inflammation, which promotes a vulnerable atherosclerotic plaque phenotype in LDLR-/- mice.


2021 ◽  
Vol 22 (21) ◽  
pp. 11899
Author(s):  
Ruchira M. Jha ◽  
Anupama Rani ◽  
Shashvat M. Desai ◽  
Sudhanshu Raikwar ◽  
Sandra Mihaljevic ◽  
...  

Sulfonylurea receptor 1 (SUR1) is a member of the adenosine triphosphate (ATP)-binding cassette (ABC) protein superfamily, encoded by Abcc8, and is recognized as a key mediator of central nervous system (CNS) cellular swelling via the transient receptor potential melastatin 4 (TRPM4) channel. Discovered approximately 20 years ago, this channel is normally absent in the CNS but is transcriptionally upregulated after CNS injury. A comprehensive review on the pathophysiology and role of SUR1 in the CNS was published in 2012. Since then, the breadth and depth of understanding of the involvement of this channel in secondary injury has undergone exponential growth: SUR1-TRPM4 inhibition has been shown to decrease cerebral edema and hemorrhage progression in multiple preclinical models as well as in early clinical studies across a range of CNS diseases including ischemic stroke, traumatic brain injury, cardiac arrest, subarachnoid hemorrhage, spinal cord injury, intracerebral hemorrhage, multiple sclerosis, encephalitis, neuromalignancies, pain, liver failure, status epilepticus, retinopathies and HIV-associated neurocognitive disorder. Given these substantial developments, combined with the timeliness of ongoing clinical trials of SUR1 inhibition, now, another decade later, we review advances pertaining to SUR1-TRPM4 pathobiology in this spectrum of CNS disease—providing an overview of the journey from patch-clamp experiments to phase III trials.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Benjamin A. Heitz ◽  
Robert Bränström ◽  
Wei Yang ◽  
Yiding Huang ◽  
Tilo Moede ◽  
...  

AbstractATP-sensitive K+ (KATP) channels couple cellular metabolism to electrical activity in many cell types. Wild-type KATP channels are comprised of four pore forming (Kir6.x) and four regulatory (sulfonylurea receptor, SURx) subunits that each contain RKR endoplasmic reticulum retention sequences that serve to properly translocate the channel to the plasma membrane. Truncated Kir6.x variants lacking RKR sequences facilitate plasma membrane expression of functional Kir6.x in the absence of SURx; however, the effects of channel truncation on plasma membrane orientation have not been explored. To investigate the role of truncation on plasma membrane orientation of ATP sensitive K+ channels, three truncated variants of Kir6.2 were used (Kir6.2ΔC26, 6xHis-Kir6.2ΔC26, and 6xHis-EGFP-Kir6.2ΔC26). Oocyte expression of Kir6.2ΔC26 shows the presence of a population of inverted inserted channels in the plasma membrane, which is not present when co-expressed with SUR1. Immunocytochemical staining of intact and permeabilized HEK293 cells revealed that the N-terminus of 6xHis-Kir6.2ΔC26 was accessible on both sides of the plasma membrane at roughly equivalent ratios, whereas the N-terminus of 6xHis-EGFP-Kir6.2Δ26 was only accessible on the intracellular face. In HEK293 cells, whole-cell electrophysiological recordings showed a ca. 50% reduction in K+ current upon addition of ATP to the extracellular solution for 6xHis-Kir6.2ΔC26, though sensitivity to extracellular ATP was not observed in 6xHis-EGFP-Kir6.2ΔC26. Importantly, the population of channels that is inverted exhibited similar function to properly inserted channels within the plasma membrane. Taken together, these data suggest that in the absence of SURx, inverted channels can be formed from truncated Kir6.x subunits that are functionally active which may provide a new model for testing pharmacological modulators of Kir6.x, but also indicates the need for added caution when using truncated Kir6.2 mutants.


2021 ◽  
Vol 13 ◽  
Author(s):  
Bing Jiang ◽  
Ying Zhang ◽  
Yan Wang ◽  
Zheng Li ◽  
Qianwei Chen ◽  
...  

Intracerebral hemorrhage (ICH) is a common disease in the elderly population. Inflammation following ICH plays a detrimental role in secondary brain injury, which is associated with a poor prognosis of patients with ICH, and no efficient pharmacological preventions are available. Here, we investigated the effects of glibenclamide (GLC) on neuroinflammation in an autoblood-induced aged rat (18 months old) model of ICH. Rats were randomized into the sham, vehicle, and GLC groups. First, we investigated the expression level of sulfonylurea receptor 1 (Sur1) surrounding the hematoma after ICH. Then, neurological scores were calculated, and water maze tests, brain water content analysis, western blotting, and immunofluorescence assays were implemented to detect the neuroprotective effect of GLC. The expression of the Sur1-Trpm4 channel was significantly increased in the perihematomal tissue following ICH in aged rats. The GLC administration effectively reduced brain edema and improved neurofunction deficits following ICH. In addition, GLC increased the expression of brain-derived neurotrophic factors and decreased the expression of proinflammatory factors [tumor necrosis factor (TNF)-α,interleukin (IL)-1, and IL-6]. Moreover, GLC markedly reduced Ikappa-B (IκB) kinase (IKK) expression in microglia and nuclear factor (NF)-κB-P65 levels in perihematomal tissue. GLC ameliorated ICH-induced neuroinflammation and improved neurological outcomes in aged rats. In part, GLC may exert these effects by regulating the NF-κB signaling pathway through the Sur1-Trpm4 channel.


2021 ◽  
Vol 8 ◽  
Author(s):  
Michael Bründl ◽  
Sarala Pellikan ◽  
Anna Stary-Weinzinger

ATP-sensitive potassium (KATP) channels consist of an inwardly rectifying K+ channel (Kir6.2) pore, to which four ATP-sensitive sulfonylurea receptor (SUR) domains are attached, thereby coupling K+ permeation directly to the metabolic state of the cell. Dysfunction is linked to neonatal diabetes and other diseases. K+ flux through these channels is controlled by conformational changes in the helix bundle region, which acts as a physical barrier for K+ permeation. In addition, the G-loop, located in the cytoplasmic domain, and the selectivity filter might contribute to gating, as suggested by different disease-causing mutations. Gating of Kir channels is regulated by different ligands, like Gβγ, H+, Na+, adenosine nucleotides, and the signaling lipid phosphatidyl-inositol 4,5-bisphosphate (PIP2), which is an essential activator for all eukaryotic Kir family members. Although molecular determinants of PIP2 activation of KATP channels have been investigated in functional studies, structural information of the binding site is still lacking as PIP2 could not be resolved in Kir6.2 cryo-EM structures. In this study, we used Molecular Dynamics (MD) simulations to examine the dynamics of residues associated with gating in Kir6.2. By combining this structural information with functional data, we investigated the mechanism underlying Kir6.2 channel regulation by PIP2.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hande Coskun ◽  
Fatima Azzahra Elbahi ◽  
Mohammad Al-Mahdi Al-Karagholi ◽  
Hashmat Ghanizada ◽  
Majid Sheykhzade ◽  
...  

BackgroundCalcitonin gene-related peptide (CGRP) dilates cranial arteries and triggers headache. The CGRP signaling pathway is partly dependent on activation of ATP-sensitive potassium (KATP) channels. Here, we investigated the effect of the KATP channel blocker glibenclamide on CGRP-induced headache and vascular changes in healthy volunteers.MethodsIn a randomized, double-blind, placebo-controlled, cross-over study, 20 healthy volunteers aged 18–27 years were randomly allocated to receive an intravenous infusion of 1.5 μg/min CGRP after oral pretreatment with glibenclamide (glibenclamide-CGRP day) or placebo (placebo-CGRP day). The primary endpoints were the difference in incidence of headache and the difference in area under the curve (AUC) for headache intensity scores (0–14 h) between glibenclamide and placebo. The secondary endpoints were the difference in AUC for middle cerebral artery blood flow velocity (VMCA), superficial temporal artery (STA) and radial artery (RA) diameter, facial flushing, heart rate (HR) and mean arterial blood pressure (MAP) (0–4 h) between glibenclamide and placebo.ResultsWe found no significant difference in the incidence of headache between glibenclamide-CGRP day (14/20, 70%) and placebo-CGRP day (19/20, 95%) (P = 0.06). The AUC for headache intensity, VMCA, STA, RA, facial skin blood flow, HR, and MAP did not differ between glibenclamide-CGRP day compared to placebo-CGRP day (P > 0.05).ConclusionPretreatment with a non-selective KATP channel inhibitor glibenclamide did not attenuate CGRP-induced headache and hemodynamic changes in healthy volunteers. We suggest that CGRP-induced responses could be mediated via activation of specific isoforms of sulfonylurea receptor subunits of KATP channel.


Sign in / Sign up

Export Citation Format

Share Document