scholarly journals Loss of SUR1 subtype KATP channels alters antinociception and locomotor activity after opioid administration

2021 ◽  
pp. 113467
Author(s):  
Gerald Sakamaki ◽  
Kayla Johnson ◽  
Megan Mensinger ◽  
Eindray Hmu ◽  
Amanda H. Klein
2009 ◽  
Vol 330 (2) ◽  
pp. 476-486 ◽  
Author(s):  
Mark A. Smith ◽  
Jennifer L. Greene-Naples ◽  
Jennifer N. Felder ◽  
Jordan C. Iordanou ◽  
Megan A. Lyle ◽  
...  

2009 ◽  
Vol 330 (2) ◽  
pp. 468-475 ◽  
Author(s):  
Mark A. Smith ◽  
Jennifer L. Greene-Naples ◽  
Megan A. Lyle ◽  
Jordan C. Iordanou ◽  
Jennifer N. Felder

2020 ◽  
Author(s):  
Gerald Sakamaki ◽  
Kayla Johnson ◽  
Megan Mensinger ◽  
Eindray Hmu ◽  
Amanda H. Klein

AbstractBackgroundOpioid signaling can occur through several downstream mediators and influence analgesia as well as reward mechanisms in the nervous system. KATP channels are downstream targets of the μ opioid receptor and contribute to morphine-induced antinociception.AimsThe aim of the present work was to assess the role of SUR1-subtype KATP channels in antinocicpetion and hyperlocomotion of synthetic and semi-synthetic opioids.MethodsAdult male and female mice wild-type (WT) and SUR1 deficient (KO) mice were assessed for mechanical and thermal antinociception after administration of either buprenorphine, fentanyl, or DAMGO. Potassium flux was assessed in the dorsal root ganglia and superficial dorsal horn cells in WT and KO mice. Hyperlocomotion was also assessed in WT and KO animals after buprenorphine, fentanyl, or DAMGO administration.ResultsSUR1 KO mice had attenuated mechanical antinociception after systemic administration of buprenorphine, fentanyl, and DAMGO. Potassium flux was also attenuated in the dorsal root ganglia and spinal cord cells after acute administration of buprenorphine and fentanyl. Hyperlocomotion after administration of morphine and buprenorphine was potentiated in SUR1 KO mice, but was not seen after administration of fentanyl or DAMGO.ConclusionsThese results suggest SUR1-subtype KATP channels mediate the antinociceptive response of several classes of opioids (alkaloid and synthetic/semi-synthetic), but may not contribute to the “drug-seeking” behaviors of all classes of opioids.


2020 ◽  
Vol 19 (5) ◽  
pp. 336
Author(s):  
Luiza Minato Sagrillo ◽  
Viviane Nogueira De Zorzi ◽  
Luiz Fernando Freire Royes ◽  
Michele Rechia Fighera ◽  
Beatriz Da Silva Rosa Bonadiman ◽  
...  

Physical exercise has been shown to be an important modulator of the antioxidant system and neuroprotective in several diseases and treatments that affect the central nervous system. In this sense, the present study aimed to evaluate the effect of physical exercise in dynamic balance, motor coordination, exploratory locomotor activity and in the oxidative and immunological balance of rats treated with vincristine (VCR). For that, 40 adult rats were divided into two groups: exercise group (6 weeks of swimming, 1h/day, 5 days/week, with overload of 5% of body weight) and sedentary group. After training, rats were treated with 0.5 mg/kg of vincristine sulfate for two weeks or with the same dose of 0.9% NaCl. The behavioral tests were conducted 1 and 7 days after each dose of VCR. On day 15 we carried out the biochemical analyzes of the cerebellum. The physical exercise was able to protect against the loss of dynamic balance and motor coordination and, had effect per se in the exploratory locomotor activity, and neutralize oxidative stress, damage DNA and immune damage caused by VCR up to 15 days after the end of the training protocol. In conclusion, we observed that previous physical training protects of the damage motor induced by vincristine.Key-words: exercise, oxidative stress, neuroprotection, cerebellum.


1970 ◽  
Vol 64 (2) ◽  
pp. 347-358
Author(s):  
A. Stanley Weltman ◽  
Arthur M. Sackler

ABSTRACT Body weight, metabolic rate, locomotor activity and alterations in endocrine organ activity were noted in recessive homozygous male whirler mice and the phenotypically »normal« heterozygotes. Representative populations of the two types were studied at different age levels. In general, body weights of the whirler mice were consistently and significantly lower. Open-field locomotion studies similarly indicated heightened locomotor activity. Total leukocyte and eosinophil counts were either markedly or significantly lower in the homozygous vs. heterozygous whirler groups. Evaluation of relative organ weights showed significantly increased adrenal weights in whirler mice sacrificed at 14 weeks and 11 months of age. These changes were accompanied by involution of the thymus. Thus, the varied data indicate persistent increased metabolism and adrenocortical activity during the life-span of the whirler mice. Seminal vesicle weight decreases in the whirler males at 11 months suggest lower gonadal function. The findings are in accord with previous studies of alterations in metabolic rates and endocrine function of homozygous whirler vs. heterozygous female mice.


Sign in / Sign up

Export Citation Format

Share Document