scholarly journals Nucleation of Nuclear Bodies

Author(s):  
Miroslav Dundr
Keyword(s):  
Author(s):  
Robert L. Ochs

By conventional electron microscopy, the formed elements of the nuclear interior include the nucleolus, chromatin, interchromatin granules, perichromatin granules, perichromatin fibrils, and various types of nuclear bodies (Figs. 1a-c). Of these structures, all have been reasonably well characterized structurally and functionally except for nuclear bodies. The most common types of nuclear bodies are simple nuclear bodies and coiled bodies (Figs. 1a,c). Since nuclear bodies are small in size (0.2-1.0 μm in diameter) and infrequent in number, they are often overlooked or simply not observed in any random thin section. The rat liver hepatocyte in Fig. 1b is a case in point. Historically, nuclear bodies are more prominent in hyperactive cells, they often occur in proximity to nucleoli (Fig. 1c), and sometimes they are observed to “bud off” from the nucleolar surface.


Author(s):  
K. Brasch ◽  
J. Williams ◽  
D. Gallo ◽  
T. Lee ◽  
R. L. Ochs

Though first described in 1903 by Ramon-y-Cajal as silver-staining “accessory bodies” to nucleoli, nuclear bodies were subsequently rediscovered by electron microscopy about 30 years ago. Nuclear bodies are ubiquitous, but seem most abundant in hyperactive and malignant cells. The best studied type of nuclear body is the coiled body (CB), so termed due to characteristic morphology and content of a unique protein, p80-coilin (Fig.1). While no specific functions have as yet been assigned to CBs, they contain spliceosome snRNAs and proteins, and also the nucleolar protein fibrillarin. In addition, there is mounting evidence that CBs arise from or are generated near the nucleolus and then migrate into the nucleoplasm. This suggests that as yet undefined links may exist, between nucleolar pre-rRNA processing events and the spliceosome-associated Sm proteins in CBs.We are examining CB and nucleolar changes in three diverse model systems: (1) estrogen stimulated chick liver, (2) normal and neoplastic cells, and (3) polyploid mouse liver.


2009 ◽  
Vol 83 (9) ◽  
pp. 4376-4385 ◽  
Author(s):  
Haidong Gu ◽  
Bernard Roizman

ABSTRACT Among the early events in herpes simplex virus 1 replication are localization of ICP0 in ND10 bodies and accumulation of viral DNA-protein complexes in structures abutting ND10. ICP0 degrades components of ND10 and blocks silencing of viral DNA, achieving the latter by dislodging HDAC1 or -2 from the lysine-specific demethylase 1 (LSD1)/CoREST/REST repressor complex. The role of this process is apparent from the observation that a dominant-negative CoREST protein compensates for the absence of ICP0 in a cell-dependent fashion. HDAC1 or -2 and the CoREST/REST complex are independently translocated to the nucleus once viral DNA synthesis begins. The focus of this report is twofold. First, we report that in infected cells, LSD1, a key component of the repressor complex, is partially degraded or remains stably associated with CoREST and is ultimately also translocated, in part, to the cytoplasm. Second, we examined the distribution of the components of the repressor complex and ICP8 early in infection in wild-type-virus- and ICP0 mutant virus-infected cells. The repressor component and ultimately ICP8 localize in structures that abut the ND10 nuclear bodies. There is no evidence that the two compartments fuse. We propose that ICP0 must dynamically interact with both compartments in order to accomplish its functions of degrading PML and SP100 and suppressing silencing of viral DNA through its interactions with CoREST. In turn, the remodeling of the viral DNA-protein complex enables recruitment of ICP8 and initiation of formation of replication compartments.


2020 ◽  
Vol 31 (18) ◽  
pp. 2048-2056 ◽  
Author(s):  
Huaiying Zhang ◽  
Rongwei Zhao ◽  
Jason Tones ◽  
Michel Liu ◽  
Robert L. Dilley ◽  
...  

A chemical dimerization approach is developed to induce phase separation of APB nuclear bodies involved in telomere elongation in alternative lengthening of telomeres (ALT) cancer cells. It reveals that ALT telomere-associated promyelocytic leukemia nuclear body (APB) fusion leads to telomere clustering to provide templates for homology-directed telomere synthesis, an ability that is decoupled from APB function in enriching DNA repair factors.


Sign in / Sign up

Export Citation Format

Share Document