sm proteins
Recently Published Documents


TOTAL DOCUMENTS

147
(FIVE YEARS 15)

H-INDEX

39
(FIVE YEARS 2)

2021 ◽  
Vol 90 (1) ◽  
Author(s):  
Yongli Zhang ◽  
Frederick M. Hughson

SNARE proteins and Sec1/Munc18 (SM) proteins constitute the core molecular engine that drives nearly all intracellular membrane fusion and exocytosis. While SNAREs are known to couple their folding and assembly to membrane fusion, the physiological pathways of SNARE assembly and the mechanistic roles of SM proteins have long been enigmatic. Here, we review recent advances in understanding the SNARE–SM fusion machinery with an emphasis on biochemical and biophysical studies of proteins that mediate synaptic vesicle fusion. We begin by discussing the energetics, pathways, and kinetics of SNARE folding and assembly in vitro. Then, we describe diverse interactions between SM and SNARE proteins and their potential impact on SNARE assembly in vivo. Recent work provides strong support for the idea that SM proteins function as chaperones, their essential role being to enable fast, accurate SNARE assembly. Finally, we review the evidence that SM proteins collaborate with other SNARE chaperones, especially Munc13-1, and briefly discuss some roles of SNARE and SM protein deficiencies in human disease. Expected final online publication date for the Annual Review of Biochemistry, Volume 90 is June 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2020 ◽  
Author(s):  
Vicki L McGovern ◽  
Kaitlyn M Kray ◽  
W David Arnold ◽  
Sandra I Duque ◽  
Chitra C Iyer ◽  
...  

Abstract Spinal muscular atrophy is caused by reduced levels of SMN resulting from the loss of SMN1 and reliance on SMN2 for the production of SMN. Loss of SMN entirely is embryonic lethal in mammals. There are several SMN missense mutations found in humans. These alleles do not show partial function in the absence of wild-type SMN and cannot rescue a null Smn allele in mice. However, these human SMN missense allele transgenes can rescue a null Smn allele when SMN2 is present. We find that the N- and C-terminal regions constitute two independent domains of SMN that can be separated genetically and undergo intragenic complementation. These SMN protein heteromers restore snRNP assembly of Sm proteins onto snRNA and completely rescue both survival of Smn null mice and motor neuron electrophysiology demonstrating that the essential functional unit of SMN is the oligomer.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Travis J Eisemann ◽  
Frederick Allen ◽  
Kelly Lau ◽  
Gregory R Shimamura ◽  
Philip D Jeffrey ◽  
...  

Fusion of intracellular trafficking vesicles is mediated by the assembly of SNARE proteins into membrane-bridging complexes. SNARE-mediated membrane fusion requires Sec1/Munc18-family (SM) proteins, SNARE chaperones that can function as templates to catalyze SNARE complex assembly. Paradoxically, the SM protein Munc18-1 traps the Qa-SNARE protein syntaxin-1 in an autoinhibited closed conformation. Here we present the structure of a second SM–Qa-SNARE complex, Vps45–Tlg2. Strikingly, Vps45 holds Tlg2 in an open conformation, with its SNARE motif disengaged from its Habc domain and its linker region unfolded. The domain 3a helical hairpin of Vps45 is unfurled, exposing the presumptive R-SNARE binding site to allow template complex formation. Although Tlg2 has a pronounced tendency to form homo-tetramers, Vps45 can rescue Tlg2 tetramers into stoichiometric Vps45–Tlg2 complexes. Our findings demonstrate that SM proteins can engage Qa-SNAREs using at least two different modes, one in which the SNARE is closed and one in which it is open.


2020 ◽  
Author(s):  
Travis Eisemann ◽  
Frederick Allen ◽  
Kelly Lau ◽  
Gregory R. Shimamura ◽  
Philip D. Jeffrey ◽  
...  

ABSTRACTFusion of intracellular trafficking vesicles is mediated by the assembly of soluble N-ethylmaleimide-sensitive fusion protein receptors (SNAREs) to form membrane-bridging complexes. Also required for SNARE-mediated membrane fusion are Sec1/Munc18-family (SM) proteins, SNARE chaperones that can function as templates to catalyze SNARE complex assembly. In the paradigmatic structure of an SM–SNARE complex, Munc18-1 bound to the Qa-SNARE syntaxin 1, the SNARE protein is trapped in an autoinhibited closed conformation that prevents it from entering into SNARE complexes. Here, we present the structure of a second SM–Qa-SNARE complex, Vps45–Tlg2. Strikingly, Vps45 holds Tlg2 in an open conformation, with its SNARE motif disengaged from its three-helical Habc domain and its linker region unfolded. The domain 3a helical hairpin of Vps45 is unfurled, exposing the presumptive R-SNARE binding site to allow template complex formation. Tlg2 has a pronounced tendency to self-associate via its SNARE motif, and we demonstrate that Vps45 can rescue Tlg2 oligomers into stoichiometric Vps45–Tlg2 complexes. Our findings demonstrate that SM proteins can engage Qa-SNAREs using at least two different modes, one in which the SNARE is closed and one in which it is open.


2020 ◽  
Vol 21 (12) ◽  
pp. 4192 ◽  
Author(s):  
Maxime Blijlevens ◽  
Malgorzata A. Komor ◽  
Rocco Sciarrillo ◽  
Egbert F. Smit ◽  
Remond J. A. Fijneman ◽  
...  

The core spliceosomal Sm proteins were recently proposed as cancer-selective lethal targets in non-small cell lung cancer (NSCLC). In contrast, the loss of the commonly mutated cancer target SF3B1 appeared to be toxic to non-malignant cells as well. In the current study, the transcriptomes of A549 NSCLC cells, in which SF3B1 or SNRPD3 was silenced, were compared using RNA sequencing. The skipping of exon 4 of the proteasomal subunit beta type-3 (PSMB3) mRNA, resulting in a shorter PSMB3-S variant, occurred only after silencing SNRPD3. This observation was extended to the other six Sm genes. Remarkably, the alternative splicing of PSMB3 mRNA upon Sm gene silencing was not observed in non-malignant IMR-90 lung fibroblasts. Furthermore, PSMB3 was found to be overexpressed in NSCLC clinical samples and PSMB3 expression correlated with Sm gene expression. Moreover, a high PSMB3 expression corresponds to worse survival in patients with lung adenocarcinomas. Finally, silencing the canonical full-length PSMB3-L, but not the shorter PSMB3-S variant, was cytotoxic and was accompanied by a decrease in proteasomal activity. Together, silencing Sm genes, but not SF3B1, causes a cytotoxic alternative splicing switch in the PSMB3 mRNA in NSCLC cells only.


2020 ◽  
Vol 103 (3) ◽  
pp. 1155-1173
Author(s):  
Malwina Hyjek‐Składanowska ◽  
Mateusz Bajczyk ◽  
Marcin Gołębiewski ◽  
Przemysław Nuc ◽  
Agnieszka Kołowerzo‐Lubnau ◽  
...  
Keyword(s):  

2020 ◽  
Vol 48 (11) ◽  
pp. 6184-6197
Author(s):  
Adriana Roithová ◽  
Zuzana Feketová ◽  
Štěpánka Vaňáčová ◽  
David Staněk

Abstract Spliceosomal small nuclear ribonucleoprotein particles (snRNPs) undergo a complex maturation pathway containing multiple steps in the nucleus and in the cytoplasm. snRNP biogenesis is strictly proofread and several quality control checkpoints are placed along the pathway. Here, we analyzed the fate of small nuclear RNAs (snRNAs) that are unable to acquire a ring of Sm proteins. We showed that snRNAs lacking the Sm ring are unstable and accumulate in P-bodies in an LSm1-dependent manner. We further provide evidence that defective snRNAs without the Sm binding site are uridylated at the 3′ end and associate with DIS3L2 3′→5′ exoribonuclease and LSm proteins. Finally, inhibition of 5′→3′ exoribonuclease XRN1 increases association of ΔSm snRNAs with DIS3L2, which indicates competition and compensation between these two degradation enzymes. Together, we provide evidence that defective snRNAs without the Sm ring are uridylated and degraded by alternative pathways involving either DIS3L2 or LSm proteins and XRN1.


2020 ◽  
Author(s):  
Eric J. Montemayor ◽  
Johanna M. Virta ◽  
Samuel M. Hayes ◽  
Yuichiro Nomura ◽  
David A. Brow ◽  
...  

AbstractEukaryotes possess eight highly conserved Lsm (like Sm) proteins that assemble into circular, heteroheptameric complexes, bind RNA, and direct a diverse range of biological processes. Among the many essential functions of Lsm proteins, the cytoplasmic Lsm1-7 complex initiates mRNA decay, while the nuclear Lsm2-8 complex acts as a chaperone for U6 spliceosomal RNA. It has been unclear how these complexes perform their distinct functions while differing by only one out of seven subunits. Here, we elucidate the molecular basis for Lsm-RNA recognition and present four high-resolution structures of Lsm complexes bound to RNAs. The structures of Lsm2-8 bound to RNA identify the unique 2′,3′ cyclic phosphate end of U6 as a prime determinant of specificity. In contrast, the Lsm1-7 complex strongly discriminates against cyclic phosphates and tightly binds to oligouridylate tracts with terminal purines. Lsm5 uniquely recognizes purine bases, explaining its divergent sequence relative to other Lsm subunits. Lsm1-7 loads onto RNA from the 3′ end and removal of the Lsm1 C-terminal region allows Lsm1-7 to scan along RNA, suggesting a gated mechanism for accessing internal binding sites. These data reveal the molecular basis for RNA binding by Lsm proteins, a fundamental step in the formation of molecular assemblies that are central to eukaryotic mRNA metabolism.


Author(s):  
Alexander L Patto ◽  
Cahir J O’Kane

AbstractLoss-of-function mutations in SPG11 protein (spatacsin) are a common cause of autosomal recessive hereditary spastic paraplegia with thin corpus callosum. To identify regions of the protein that may have functions that are disrupted in disease, we carried out bioinformatic analyses of its conserved regions. An N-terminal region of around 650 amino-acid residues, present in SPG11 across a wide range of metazoan animals, was missing from many insect lineages. Evolutionary loss of this domain correlated with loss of its binding partner, the AP-5 adaptor complex, suggesting that its main function is interaction with AP-5 in intracellular trafficking, and that the remainder of SPG11 carries out AP-5-independent functions. At the C-terminus of SPG11, a spatacsin_C domain showed sequence similarity and predicted structural homology to the Vps16_C domain of the HOPS complex protein Vps16. It localized to acidic compartments, consistent with a role in endolysosomal or autolysosomal transport, like Vps16. Mass spectrometry analysis of binding partners of this domain identified membrane trafficking proteins, some SM proteins, and several aminoacyl-tRNA synthetases. Since mutations affecting SPG11 or aminoacyl-tRNA synthetases can both cause Charcot-Marie-Tooth neuropathy (CMT) type 2, we suggest autolysosomal trafficking as a target process in CMT type 2.


2020 ◽  
Vol 477 (1) ◽  
pp. 243-258 ◽  
Author(s):  
Herre Jelger Risselada ◽  
Andreas Mayer

Physiological membrane vesicles are built to separate reaction spaces in a stable manner, even when they accidentally collide or are kept in apposition by spatial constraints in the cell. This requires a natural resistance to fusion and mixing of their content, which originates from substantial energetic barriers to membrane fusion [1]. To facilitate intracellular membrane fusion reactions in a controlled manner, proteinaceous fusion machineries have evolved. An important open question is whether protein fusion machineries actively pull the fusion reaction over the present free energy barriers, or whether they rather catalyze fusion by lowering those barriers. At first sight, fusion proteins such as SNARE complexes and viral fusion proteins appear to act as nano-machines, which mechanically transduce force to the membranes and thereby overcome the free energy barriers [2,3]. Whether fusion proteins additionally alter the free energy landscape of the fusion reaction via catalytic roles is less obvious. This is a question that we shall discuss in this review, with particular focus on the influence of the eukaryotic SNARE-dependent fusion machinery on the final step of the reaction, the formation and expansion of the fusion pore.


Sign in / Sign up

Export Citation Format

Share Document