scholarly journals Engagement of the Lysine-Specific Demethylase/HDAC1/CoREST/REST Complex by Herpes Simplex Virus 1

2009 ◽  
Vol 83 (9) ◽  
pp. 4376-4385 ◽  
Author(s):  
Haidong Gu ◽  
Bernard Roizman

ABSTRACT Among the early events in herpes simplex virus 1 replication are localization of ICP0 in ND10 bodies and accumulation of viral DNA-protein complexes in structures abutting ND10. ICP0 degrades components of ND10 and blocks silencing of viral DNA, achieving the latter by dislodging HDAC1 or -2 from the lysine-specific demethylase 1 (LSD1)/CoREST/REST repressor complex. The role of this process is apparent from the observation that a dominant-negative CoREST protein compensates for the absence of ICP0 in a cell-dependent fashion. HDAC1 or -2 and the CoREST/REST complex are independently translocated to the nucleus once viral DNA synthesis begins. The focus of this report is twofold. First, we report that in infected cells, LSD1, a key component of the repressor complex, is partially degraded or remains stably associated with CoREST and is ultimately also translocated, in part, to the cytoplasm. Second, we examined the distribution of the components of the repressor complex and ICP8 early in infection in wild-type-virus- and ICP0 mutant virus-infected cells. The repressor component and ultimately ICP8 localize in structures that abut the ND10 nuclear bodies. There is no evidence that the two compartments fuse. We propose that ICP0 must dynamically interact with both compartments in order to accomplish its functions of degrading PML and SP100 and suppressing silencing of viral DNA through its interactions with CoREST. In turn, the remodeling of the viral DNA-protein complex enables recruitment of ICP8 and initiation of formation of replication compartments.

2004 ◽  
Vol 78 (16) ◽  
pp. 8582-8592 ◽  
Author(s):  
Audrey Esclatine ◽  
Brunella Taddeo ◽  
Bernard Roizman

ABSTRACT Herpes simplex virus 1 causes a shutoff of cellular protein synthesis through the degradation of RNA that is mediated by the virion host shutoff (Vhs) protein encoded by the UL41 gene. We reported elsewhere that the Vhs-dependent degradation of RNA is selective, and we identified RNAs containing AU-rich elements (AREs) that were upregulated after infection but degraded by deadenylation and progressive 3′-to-5′ degradation. We also identified upregulated RNAs that were not subject to Vhs-dependent degradation (A. Esclatine, B. Taddeo, L. Evans, and B. Roizman, Proc. Natl. Acad. Sci. USA 101:3603-3608, 2004). Among the latter was the RNA encoding tristetraprolin, a protein that binds AREs and is known to be associated with the degradation of RNAs containing AREs. Prompted by this observation, we examined the status of the ARE binding proteins tristetraprolin and TIA-1/TIAR in infected cells. We report that tristetraprolin was made and accumulated in the cytoplasm of wild-type virus-infected human foreskin fibroblasts as early as 2 h and in HEp-2 cells as early as 6 h after infection. The amounts of tristetraprolin that accumulated in the cytoplasm of cells infected with a mutant virus lacking UL41 were significantly lower than those in wild-type virus-infected cells. The localization of tristetraprolin was not modified in cells infected with a mutant lacking the gene encoding infected cell protein 4 (ICP4). TIA-1 and TIAR are two other proteins that are associated with the regulation of ARE-containing RNAs and that normally reside in nuclei. In infected cells, they started to accumulate in the cytoplasm after 6 h of infection. In cells infected with the mutant virus lacking UL41, TIA-1/TIAR accumulated in the cytoplasm in granular structures reminiscent of stress granules in a significant percentage of the cells. In addition, an antibody to tristetraprolin coprecipitated the Vhs protein from lysates of cells late in infection. The results indicate that the Vhs-dependent degradation of ARE-containing RNAs correlates with the transactivation, cytoplasmic accumulation, and persistence of tristetraprolin in infected cells.


2007 ◽  
Vol 82 (4) ◽  
pp. 1701-1713 ◽  
Author(s):  
Maria Kalamvoki ◽  
Jianguo Qu ◽  
Bernard Roizman

ABSTRACT In wild-type herpes simplex virus 1-infected cells, the major regulatory protein ICP4 resides in the nucleus whereas ICP0 becomes dynamically associated with proteasomes and late in infection is translocated and dispersed in the cytoplasm. Inhibition of proteasomal function results in retention or transport of ICP0 to the nucleus. We report that in cells infected with mutants lacking glycoprotein E (gE), glycoprotein I (gI), or the product of the UL41 gene, both ICP4 and ICP0 are translocated to the cytoplasm and coaggregate in small dense structures that, in the presence of proteasomal inhibitor MG132, also contain proteasomal components. Gold particle-conjugated antibody to ICP0 reacted in thin sections with dense protein aggregates in the cytoplasm of mutant virus-infected cells. Similar aggregates were present in the nuclei but not in the cytoplasm of wild-type virus-infected cells. Exposure of cells early in infection to MG132 does not result in retention of ICP0 as in wild-type virus-infected cells. The results suggest that the retention of ICP4 and ICP0 in the nucleus is a dynamic process that involves the function of other viral proteins that may include the Fc receptor formed by the gE/gI complex and is not merely the consequence of expression of a nuclear localization signal. It is noteworthy that in ΔUL41-infected cells gE is retained in the trans-Golgi network and is not widely dispersed in cellular membranes.


2008 ◽  
Vol 82 (9) ◽  
pp. 4527-4532 ◽  
Author(s):  
Benjamin A. Smith-Donald ◽  
Lizette O. Durand ◽  
Bernard Roizman

ABSTRACT Earlier studies have shown that in herpes simplex virus 1-infected cells, ICP22 upregulates the accumulation of a subset of γ2 proteins exemplified by the products of the UL38, UL41, and US11 genes. The ICP22-dependent process involves degradation of cyclins A and B1, the stabilization and activation of cdc2, physical interaction of activated cdc2 with the UL42 DNA synthesis processivity factor, and recruitment and phosphorylation of topoisomerase IIα by the cdc2/UL42 complex. Activation of cdc2, the first step in the process, is a key function of the mitotic phosphatase cdc25C. To define the role of cdc25C, we probed some features of the ICP22-dependent pathway of upregulation of γ2 genes in cdc25C−/− cells and in cdc25C+/+ cells derived from sibling mice. We report that cyclin B1 turned over in cdc25C+/+ or cdc25C−/− cells at the same rate, that cdc2 increased in amount, and that US11 and UL38 proteins and infectious virus accumulated in smaller amounts than in wild-type infected cells. The reduction in UL38 protein accumulation and virus was greater in cdc25C−/− cells infected with virus lacking ICP22 than in cells infected with wild-type virus. We conclude that cdc25C phosphatase plays a role in viral replication and that this role extends beyond its function of activating cdc2 for initiation of the ICP22-dependent cascade for upregulation of γ2 gene expression.


2006 ◽  
Vol 80 (3) ◽  
pp. 1476-1486 ◽  
Author(s):  
Akihisa Kato ◽  
Mayuko Yamamoto ◽  
Takashi Ohno ◽  
Michiko Tanaka ◽  
Tetsutaro Sata ◽  
...  

ABSTRACT UL13 and Us3 are protein kinases encoded by herpes simplex virus 1. We report here that Us3 is a physiological substrate for UL13 in infected cells, based on the following observations. (i) The electrophoretic mobility, in denaturing gels, of Us3 isoforms from Vero cells infected with wild-type virus was slower than that of isoforms from cells infected with a UL13 deletion mutant virus (ΔUL13). After treatment with phosphatase, the electrophoretic mobility of the Us3 isoforms from cells infected with wild-type virus changed, with one isoform migrating as fast as one of the Us3 isoforms from ΔUL13-infected cells. (ii) A recombinant protein containing a domain of Us3 was phosphorylated by UL13 in vitro. (iii) The phenotype of ΔUL13 resembles that of a recombinant virus lacking the Us3 gene (ΔUs3) with respect to localization of the viral envelopment factors UL34 and UL31, whose localization has been shown to be regulated by Us3. UL34 and UL31 are localized in a smooth pattern throughout the nuclei of cells infected with wild-type virus, whereas their localization in ΔUL13- and ΔUs3-infected cells appeared as nuclear punctate patterns. These results indicate that UL13 phosphorylates Us3 in infected cells and regulates UL34 and UL31 localization, either by phosphorylating Us3 or by a Us3-independent mechanism.


2007 ◽  
Vol 81 (12) ◽  
pp. 6419-6433 ◽  
Author(s):  
Kui Yang ◽  
Fred Homa ◽  
Joel D. Baines

ABSTRACT Herpes simplex virus (HSV) terminase is an essential component of the molecular motor that translocates DNA through the portal vertex in the capsid during DNA packaging. The HSV terminase is believed to consist of the UL15, UL28, and UL33 gene products (pUL15, pUL28, and pUL33, respectively), whereas the HSV type 1 portal vertex is encoded by UL6. Immunoprecipitation reactions revealed that pUL15, pUL28, and pUL33 interact in cytoplasmic and nuclear lysates. Deletion of a canonical nuclear localization signal (NLS) from pUL15 generated a dominant-negative protein that, when expressed in an engineered cell line, decreased the replication of wild-type virus up to 80-fold. When engineered into the genome of recombinant HSV, this mutation did not interfere with the coimmunoprecipitation of pUL15, pUL28, and pUL33 from cytoplasmic lysates of infected cells but prevented viral replication, most nuclear import of both pUL15 and pUL28, and coimmunoprecipitation of pUL15, pUL28, and pUL33 from nuclear lysates. When the pUL15/pUL28 interaction was reduced in infected cells by the truncation of the C terminus of pUL28, pUL28 remained in the cytoplasm. Whether putative terminase components localized in the nucleus or cytoplasm, pUL6 localized in infected cell nuclei, as viewed by indirect immunofluorescence. The finding that the portal and terminase do eventually interact was supported by the observation that pUL6 coimmunoprecipitated strongly with pUL15 and weakly with pUL28 from extracts of infected cells in 1.0 M NaCl. These data are consistent with the hypothesis that the pUL15/pUL28/pUL33 complex forms in the cytoplasm and that an NLS in pUL15 is used to import the complex into the nucleus where at least pUL15 and pUL28 interact with the portal to mediate DNA packaging.


2008 ◽  
Vol 83 (1) ◽  
pp. 181-187 ◽  
Author(s):  
Haidong Gu ◽  
Bernard Roizman

ABSTRACT ICP0, an α (immediate-early) protein of herpes simplex virus 1, performs at least two key functions. It blocks inhibition of viral-gene expression by interferon, a function dependent on the degradation of the ND10 components PML and SP100 by the ubiquitin ligase expressed by the RING finger (RF), and it blocks silencing of viral DNA mediated by the HDAC1/2-CoREST-REST complex. In the latter case, a mutant CoREST lacking the HDAC1 binding site compensates totally or in part for the absence of ICP0 in a cell-type-dependent manner. Here, we compare the phenotypes of an ICP0 mutant containing disabling amino acid substitutions in the RF with those of a mutant with substitutions in the CoREST binding site (R8507). We report the following: (i) the onset of replication of both mutants was delayed, but the RF mutant yields did not reach wild-type virus levels even as late as 48 h after infection, and (ii) in infected cells, PML is rapidly degraded by wild-type virus, with some delay by the R8507 mutant, and is spared by the RF mutant. The translocation of ICP0 to the cytoplasm is impaired in cells infected with the RF mutant or delayed in cells infected with the R8507 mutant. Finally, in contrast to wild-type viruses, both mutants are inhibited by alpha or gamma interferon. The results indicate that both sets of events, the degradation of PML and the blocking of silencing, are interdependent and in large measure dependent on events in the ND10 nuclear bodies.


Author(s):  
Z. Hong Zhou ◽  
Jing He ◽  
Joanita Jakana ◽  
J. D. Tatman ◽  
Frazer J. Rixon ◽  
...  

Herpes simplex virus-1 (HSV-1) is a ubiquitous virus which is implicated in diseases ranging from self-curing cold sores to life-threatening infections. The 2500 Å diameter herpes virion is composed of a glycoprotein spike containing, lipid envelope, enclosing a protein layer (the tegument) in which is embedded the capsid (which contains the dsDNA genome). The B-, and A- and C-capsids, representing different morphogenetic stages in HSV-1 infected cells, are composed of 7, and 5 structural proteins respectively. The three capsid types are organized in similar T=16 icosahedral shells with 12 pentons, 150 hexons, and 320 connecting triplexes. Our previous 3D structure study at 26 Å revealed domain features of all these structural components and suggested probable locations for the outer shell proteins, VP5, VP26, VP19c and VP23. VP5 makes up most of both pentons and hexons. VP26 appeared to bind to the VP5 subunit in hexon but not to that in penton.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 196
Author(s):  
Sara Artusi ◽  
Emanuela Ruggiero ◽  
Matteo Nadai ◽  
Beatrice Tosoni ◽  
Rosalba Perrone ◽  
...  

The herpes simplex virus 1 (HSV-1) genome is extremely rich in guanine tracts that fold into G-quadruplexes (G4s), nucleic acid secondary structures implicated in key biological functions. Viral G4s were visualized in HSV-1 infected cells, with massive virus cycle-dependent G4-formation peaking during viral DNA replication. Small molecules that specifically interact with G4s have been shown to inhibit HSV-1 DNA replication. We here investigated the antiviral activity of TMPyP4, a porphyrin known to interact with G4s. The analogue TMPyP2, with lower G4 affinity, was used as control. We showed by biophysical analysis that TMPyP4 interacts with HSV-1 G4s, and inhibits polymerase progression in vitro; in infected cells, it displayed good antiviral activity which, however, was independent of inhibition of virus DNA replication or entry. At low TMPyP4 concentration, the virus released by the cells was almost null, while inside the cell virus amounts were at control levels. TEM analysis showed that virus particles were trapped inside cytoplasmatic vesicles, which could not be ascribed to autophagy, as proven by RT-qPCR, western blot, and immunofluorescence analysis. Our data indicate a unique mechanism of action of TMPyP4 against HSV-1, and suggest the unprecedented involvement of currently unknown G4s in viral or antiviral cellular defense pathways.


2017 ◽  
Vol 91 (12) ◽  
Author(s):  
Fumio Maeda ◽  
Jun Arii ◽  
Yoshitaka Hirohata ◽  
Yuhei Maruzuru ◽  
Naoto Koyanagi ◽  
...  

ABSTRACT Upon herpes simplex virus 1 (HSV-1) infection, the CD98 heavy chain (CD98hc) is redistributed around the nuclear membrane (NM), where it promotes viral de-envelopment during the nuclear egress of nucleocapsids. In this study, we attempted to identify the factor(s) involved in CD98hc accumulation and demonstrated the following: (i) the null mutation of HSV-1 UL34 caused specific dispersion throughout the cytoplasm of CD98hc and the HSV-1 de-envelopment regulators, glycoproteins B and H (gB and gH); (ii) as observed with CD98hc, gB, and gH, wild-type HSV-1 infection caused redistribution of the endoplasmic reticulum (ER) markers calnexin and ERp57 around the NM, whereas the UL34-null mutation caused cytoplasmic dispersion of these markers; (iii) the ER markers colocalized efficiently with CD98hc, gB, and gH in the presence and absence of UL34 in HSV-1-infected cells; (iv) at the ultrastructural level, wild-type HSV-1 infection caused ER compression around the NM, whereas the UL34-null mutation caused cytoplasmic dispersion of the ER; and (v) the UL34-null mutation significantly decreased the colocalization efficiency of lamin protein markers of the NM with CD98hc and gB. Collectively, these results indicate that HSV-1 infection causes redistribution of the ER around the NM, with resulting accumulation of ER-associated CD98hc, gB, and gH around the NM and that UL34 is required for ER redistribution, as well as for efficient recruitment to the NM of the ER-associated de-envelopment factors. Our study suggests that HSV-1 induces remodeling of the global ER architecture for recruitment of regulators mediating viral nuclear egress to the NM. IMPORTANCE The ER is an important cellular organelle that exists as a complex network extending throughout the cytoplasm. Although viruses often remodel the ER to facilitate viral replication, information on the effects of herpesvirus infections on ER morphological integrity is limited. Here, we showed that HSV-1 infection led to compression of the global ER architecture around the NM, resulting in accumulation of ER-associated regulators associated with nuclear egress of HSV-1 nucleocapsids. We also identified HSV-1 UL34 as a viral factor that mediated ER remodeling. Furthermore, we demonstrated that UL34 was required for efficient targeting of these regulators to the NM. To our knowledge, this is the first report showing that a herpesvirus remodels ER global architecture. Our study also provides insight into the mechanism by which the regulators for HSV-1 nuclear egress are recruited to the NM, where this viral event occurs.


Sign in / Sign up

Export Citation Format

Share Document