Quantifying Cellular Adhesion to Covalently Immobilized Extracellular Matrix Proteins by Single-Cell Force Spectroscopy

Author(s):  
Jens Friedrichs ◽  
Carsten Werner ◽  
Daniel J. Müller
2015 ◽  
Vol 6 ◽  
pp. 157-166 ◽  
Author(s):  
Miao Yu ◽  
Nico Strohmeyer ◽  
Jinghe Wang ◽  
Daniel J Müller ◽  
Jonne Helenius

Mammalian cells regulate adhesion by expressing and regulating a diverse array of cell adhesion molecules on their cell surfaces. Since different cell types express distinct sets of cell adhesion molecules, substrate-specific adhesion is cell type- and condition-dependent. Single-cell force spectroscopy is used to quantify the contribution of cell adhesion molecules to adhesion of cells to specific substrates at both the cell and single molecule level. However, the low throughput of single-cell adhesion experiments greatly limits the number of substrates that can be examined. In order to overcome this limitation, segmented polydimethylsiloxane (PDMS) masks were developed, allowing the measurement of cell adhesion to multiple substrates. To verify the utility of the masks, the adhesion of four different cell lines, HeLa (Kyoto), prostate cancer (PC), mouse kidney fibroblast and MDCK, to three extracellular matrix proteins, fibronectin, collagen I and laminin 332, was examined. The adhesion of each cell line to different matrix proteins was found to be distinct; no two cell lines adhered equally to each of the proteins. The PDMS masks improved the throughput limitation of single-cell force spectroscopy and allowed for experiments that previously were not feasible. Since the masks are economical and versatile, they can aid in the improvement of various assays.


2004 ◽  
Vol 216 (03) ◽  
Author(s):  
U Schüller ◽  
W Hartmann ◽  
A Koch ◽  
K Schilling ◽  
OD Wiestler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document