The Electrovomeronasogram: Field Potential Recordings in the Mouse Vomeronasal Organ

Author(s):  
Trese Leinders-Zufall ◽  
Frank Zufall
2013 ◽  
Vol 133 (8) ◽  
pp. 1493-1500 ◽  
Author(s):  
Ryuji Kano ◽  
Kenichi Usami ◽  
Takahiro Noda ◽  
Tomoyo I. Shiramatsu ◽  
Ryohei Kanzaki ◽  
...  

2018 ◽  
Vol 17 (6) ◽  
pp. 404-411 ◽  
Author(s):  
Syeda Mehpara Farhat ◽  
Touqeer Ahmed

Background: Aluminum (Al) causes neurodegeneration and its toxic effects on cholinergic system in the brain is well documented. However, it is unknown whether and how Al changes oscillation patterns, driven by the cholinergic system, in the hippocampus. Objective: We studied acute effects of Al on nicotinic acetylcholine receptors (nAChRs)-mediated modulation of persistent gamma oscillations in the hippocampus. Method: The field potential recording was done in CA3 area of acute hippocampal slices. Results: Carbachol-induced gamma oscillation peak power increased (1.32±0.09mV2/Hz, P<0.01) in control conditions (without Al) by application of 10µM nicotine as compared to baseline value normalized to 1. This nicotine-induced facilitation of gamma oscillation peak power was found to depend on non-α7 nAChRs. In slices with Al pre-incubation for three to four hours, gamma oscillation peak power was reduced (5.4±1.8mV2/Hz, P<0.05) and facilitatory effect of nicotine on gamma oscillation peak power was blocked as compared to the control (18.06±2.1mV2/Hz) or one hour Al pre-incubated slices (11.3±2.5mV2/Hz). Intriguingly wash-out, after three to four hours of Al incubation, failed to restore baseline oscillation power and its facilitation by nicotine as no difference was observed in gamma oscillation peak power between Al wash-out slices (3.4±1.1mV2/Hz) and slices without washout (3.6±0.9mV2/Hz). Conclusion: This study shows that at cellular level, exposure of hippocampal tissue to Al compromised nAChR-mediated facilitation of cholinergic hippocampal gamma oscillations. Longer in vitro Al exposure caused permanent changes in hippocampal oscillogenic circuitry and changed its sensitivity to nAChR-modulation. This study will help to understand the possible mechanism of cognitive decline induced by Al.


1996 ◽  
Vol 76 (4) ◽  
pp. 2707-2717 ◽  
Author(s):  
R. D. Andrew ◽  
J. R. Adams ◽  
T. M. Polischuk

1. Brain ischemia causes excess release and accumulation of glutamate that binds to postsynaptic receptors. This opens ionotropic channels that mediate neuronal depolarization and ionic fluxes that can lead to neuronal death. 2. The CA1 pyramidal cell region of the hippocampus is particularly susceptible to this neurotoxic process. Brain cell swelling is considered an early excitotoxic event, but remains poorly under stood and documented. As cells swell, light transmittance (LT) increases through brain tissue, so we hypothesized that brief exposure to glutamate agonists would elicit cell swelling that could be imaged in real time in the hippocampal slice. 3. A 1-min bath application of 100 microM N-methyl-D-aspartate (NMDA) or 100 microM kainate at 22 degrees C greatly increased LT, particularly in the dendritic regions of CA1. The response peaked by 2-3 min and slowly reversed over the subsequent 20 min following exposure. Peak LT increases were > 50% in CA1 stratum radiatum and > 20% in both CA1 stratum oriens and the dendritic region of the dentate gyrus, all areas with a high concentration of NMDA and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors. The CA3 stratum radiatum, which contains fewer of these receptors, showed a comparatively small LT increase. 4. The NMDA receptor antagonist 2-amino-5-phosphonovalerate (AP-5) [but not 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX)] blocked the CA1 response to NMDA, whereas the non-NMDA receptor antagonist CNQX (but not AP-5) blocked the response to kainate. The relative tissue resistance measured across CA1 stratum radiatum increased after NMDA or kainate exposure with a time course similar to the LT change described above. The increase in relative tissue resistance was blocked by kynurenate, a nonspecific glutamate antagonist. Increases in both LT and tissue resistance provide two independent lines of evidence that cell swelling rapidly developed in CA1 dendritic areas after activation of NMDA or AMPA receptors. 5. This swelling at 22 degrees C was accompanied by a temporary loss of the evoked CA1 field potential. However, at 37 degrees C the dendritic swelling rapidly progressed to an irreversible LT increase (swelling) of the CA1 cell bodies accompanied by a permanent loss of the evoked field. 6. We propose that dendritic swelling mediated by NMDA and AMPA receptors is an early excitotoxic event that can herald permanent damage to CA1 neurons, those cells most vulnerable to ischemic insult.


Sign in / Sign up

Export Citation Format

Share Document