Biologically Inspired Motion Planning in Robotics

Author(s):  
Teresa Zielinska ◽  
Chee-Meng Chew
Author(s):  
Veljko Potkonjak ◽  
Miomir Vukobratovic ◽  
Kalman Babkovic ◽  
Branislav Borovac

This chapter relates biomechanics to robotics. The mathematical models are derived to cover the kinematics and dynamics of virtually any motion of a human or a humanoid robot. Benefits for humanoid robots are seen in fully dynamic control and a general simulator for the purpose of system designing and motion planning. Biomechanics in sports and medicine can use these as a tool for mathematical analysis of motion and disorders. Better results in sports and improved diagnostics are foreseen. This work is a step towards the biologically-inspired robot control needed for a diversity of tasks expected in humanoids, and robotic assistive devices helping people to overcome disabilities or augment their physical potentials. This text deals mainly with examples coming from sports in order to justify this aspect of research.


Author(s):  
Swagatam Das ◽  
Amit Konar

This chapter explores the scope of biologically inspired swarm intelligence (SI) into production management with special emphasis in two specific problems of vehicle routing and motion planning of mobile robots. Computer simulations undertaken for this study have also been included to demonstrate the elegance in the application of the proposed theory in the said real-world problems. Possible directions of future research and industrial applications have also been appended at the end of the chapter.


2011 ◽  
pp. 998-1022
Author(s):  
Veljko Potkonjak ◽  
Miomir Vukobratovic ◽  
Kalman Babkovic ◽  
Branislav Borovac

This chapter relates biomechanics to robotics. The mathematical models are derived to cover the kinematics and dynamics of virtually any motion of a human or a humanoid robot. Benefits for humanoid robots are seen in fully dynamic control and a general simulator for the purpose of system designing and motion planning. Biomechanics in sports and medicine can use these as a tool for mathematical analysis of motion and disorders. Better results in sports and improved diagnostics are foreseen. This work is a step towards the biologically-inspired robot control needed for a diversity of tasks expected in humanoids, and robotic assistive devices helping people to overcome disabilities or augment their physical potentials. This text deals mainly with examples coming from sports in order to justify this aspect of research.


2006 ◽  
Author(s):  
Jonathan Vaughan ◽  
Steven Jax ◽  
David A. Rosenbaum
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document