Unified Dynamic and Control Models for Reconfigurable Robots

Author(s):  
A. M. Djuric ◽  
W. H. ElMaraghy
2022 ◽  
Vol 2022 ◽  
pp. 1-16
Author(s):  
Sebastian-Camilo Vanegas-Ayala ◽  
Julio Barón-Velandia ◽  
Daniel-David Leal-Lara

Cultivating in greenhouses constitutes a fundamental tool for the development of high-quality crops with a high degree of profitability. Prediction and control models guarantee the correct management of environment variables, for which fuzzy inference systems have been successfully implemented. The purpose of this review is determining the various relationships in fuzzy inference systems currently used for the modelling, prediction, and control of humidity in greenhouses and how they have changed over time to be able to develop more robust and easier to understand models. The methodology follows the PRISMA work guide. A total of 93 investigations in 4 academic databases were reviewed; their bibliometric aspects, which contribute to the objective of the investigation, were extracted and analysed. It was finally concluded that the development of models based in Mamdani fuzzy inference systems, integrated with optimization and fuzzy clustering techniques, and following strategies such as model-based predictive control guarantee high levels of precision and interpretability.


Author(s):  
A. S. White

This chapter examines the established Systems Dynamics (SD) methods applied to software projects in order to simplify them. These methods are highly non-linear and contain large numbers of variables and built-in decisions. A SIMULINK version of an SD model is used here and conclusions are made with respect to the initial main controlling factors, compared to a NASA project. Control System methods are used to evaluate the critical features of the SD models. The eigenvalues of the linearised system indicate that the important factors are the hiring delay time, the assimilation time, and the employment time. This illustrates how the initial state of the system is at best neutrally stable with control only being achieved with complex non-linear decisions. The purpose is to compare the simplest SD and control models available required for “good” simulation of project behaviour with the Abdel-Hamid software project model. These models give clues to the decision structures that are necessary for good agreement with reality. The final simplified model, with five states, is a good match for the prime states of the Abdel-Hamid model, the NASA data, and compares favourably to the Ruiz model. The linear control system model has a much simpler structure, with the same limitations. Both the simple SD and control models are more suited to preliminary estimates of project performance.


2005 ◽  
Vol 33 (4) ◽  
pp. 321-353 ◽  
Author(s):  
Egoza Wasserman ◽  
Yitzchak Millgram

This article presents a study whose purpose was to examine how the educational system functions following the assimilation of a technological environment and how the relationships between the subsystems are affected and affect each other following this change. The study took place over the course of three years in schools in the State of Israel using questionnaires, observations, case description, and focus groups. This study used the Systemic Control Model (SCM), which provides a system of feedback and control. Through application of the model significant data is received informing one about the progression of the change process while the execution of the stages and various processes are being carried out. The process of introducing the computer as an educational tool into the educational system necessitated the application of two control models: the in-depth control model and the time continuum control model. The in-depth control model examined the various factors that participated in the process and their mutual influence, and the time continuum model received feedback at various points in time. The major conclusion of the study is that the combined activation of both control models is a condition for the success of the assimilation process of any education system change.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5362
Author(s):  
S. M. Bhagya P. Samarakoon ◽  
M. A. Viraj J. Muthugala ◽  
Raihan E. Abdulkader ◽  
Soh Wei Si ◽  
Thein T. Tun ◽  
...  

Area coverage is a crucial factor for a robot intended for applications such as floor cleaning, disinfection, and inspection. Robots with fixed shapes could not realize an adequate level of area coverage performance. Reconfigurable robots have been introduced to overcome the limitations of fixed-shape robots, such as accessing narrow spaces and cover obstacles. Although state-of-the-art reconfigurable robots used for coverage applications are capable of shape-changing for improving the area coverage, the reconfiguration is limited to a few predefined shapes. It has been proven that the ability of reconfiguration beyond a few shapes can significantly improve the area coverage performance of a reconfigurable robot. In this regard, this paper proposes a novel robot model and a low-level controller that can facilitate the reconfiguration beyond a small set of predefined shapes and locomotion per instructions while firmly maintaining the shape. A prototype of a robot that facilitates the aim mentioned above has been designed and developed. The proposed robot model and controller have been integrated into the prototype, and experiments have been conducted considering various reconfiguration and locomotion scenarios. Experimental results confirm the validity of the proposed model and controller during reconfiguration and locomotion of the robot. Moreover, the applicability of the proposed model and controller for achieving high-level autonomous capabilities has been proven.


Sign in / Sign up

Export Citation Format

Share Document