Extratropical Synoptic-Scale Processes and Severe Convection

2001 ◽  
pp. 27-69 ◽  
Author(s):  
Charles A. Doswell ◽  
Lance F. Bosart
2017 ◽  
Vol 74 (9) ◽  
pp. 3043-3054 ◽  
Author(s):  
Vince Agard ◽  
Kerry Emanuel

Abstract A thermodynamic constraint on convective available potential energy (CAPE) in continental environments is established using an idealized one-dimensional model. This theoretical model simplifies the synoptic-scale preconditioning framework for continental severe convection by considering a dry adiabatic column that comes into contact with a moist land surface. A system of equations is derived to describe the evolution of the ensuing surface boundary layer. From these, the maximum value of transient CAPE in the column can be found for any particular combination of surface temperature and moisture. It is demonstrated that, for a given range of surface temperatures, the value of peak CAPE scales with the Clausius–Clapeyron relation.


2001 ◽  
Vol 50 ◽  
pp. 27-70 ◽  
Author(s):  
Charles A. Doswell ◽  
Lance F. Bosart

Abstract No Abstract available.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 294
Author(s):  
Norel Rimbu ◽  
Monica Ionita ◽  
Gerrit Lohmann

The variability of stable oxygen isotope ratios (δ18O) from Greenland ice cores is commonly linked to changes in local climate and associated teleconnection patterns. In this respect, in this study we investigate ice core δ18O variability from a synoptic scale perspective to assess the potential of such records as proxies for extreme climate variability and associated weather patterns. We show that positive (negative) δ18O anomalies in three southern and central Greenland ice cores are associated with relatively high (low) Rossby Wave Breaking (RWB) activity in the North Atlantic region. Both cyclonic and anticyclonic RWB patterns associated with high δ18O show filaments of strong moisture transport from the Atlantic Ocean towards Greenland. During such events, warm and wet conditions are recorded over southern, western and central part of Greenland. In the same time the cyclonic and anticyclonic RWB patterns show enhanced southward advection of cold polar air masses on their eastern side, leading to extreme cold conditions over Europe. The association between high δ18O winters in Greenland ice cores and extremely cold winters over Europe is partly explained by the modulation of the RWB frequency by the tropical Atlantic sea surface temperature forcing, as shown in recent modeling studies. We argue that δ18O from Greenland ice cores can be used as a proxy for RWB activity in the Atlantic European region and associated extreme weather and climate anomalies.


2021 ◽  
Vol 13 (4) ◽  
pp. 554
Author(s):  
A. A. Masrur Ahmed ◽  
Ravinesh C Deo ◽  
Nawin Raj ◽  
Afshin Ghahramani ◽  
Qi Feng ◽  
...  

Remotely sensed soil moisture forecasting through satellite-based sensors to estimate the future state of the underlying soils plays a critical role in planning and managing water resources and sustainable agricultural practices. In this paper, Deep Learning (DL) hybrid models (i.e., CEEMDAN-CNN-GRU) are designed for daily time-step surface soil moisture (SSM) forecasts, employing the gated recurrent unit (GRU), complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), and convolutional neural network (CNN). To establish the objective model’s viability for SSM forecasting at multi-step daily horizons, the hybrid CEEMDAN-CNN-GRU model is tested at 1st, 5th, 7th, 14th, 21st, and 30th day ahead period by assimilating a comprehensive pool of 52 predictor dataset obtained from three distinct data sources. Data comprise satellite-derived Global Land Data Assimilation System (GLDAS) repository a global, high-temporal resolution, unique terrestrial modelling system, and ground-based variables from Scientific Information Landowners (SILO) and synoptic-scale climate indices. The results demonstrate the forecasting capability of the hybrid CEEMDAN-CNN-GRU model with respect to the counterpart comparative models. This is supported by a relatively lower value of the mean absolute percentage and root mean square error. In terms of the statistical score metrics and infographics employed to test the final model’s utility, the proposed CEEMDAN-CNN-GRU models are considerably superior compared to a standalone and other hybrid method tested on independent SSM data developed through feature selection approaches. Thus, the proposed approach can be successfully implemented in hydrology and agriculture management.


2009 ◽  
Vol 24 (6) ◽  
pp. 1732-1747 ◽  
Author(s):  
Alain Roberge ◽  
John R. Gyakum ◽  
Eyad H. Atallah

Abstract Significant cool season precipitation along the western coast of North America is often associated with intense water vapor transport (IWVT) from the Pacific Ocean during favorable synoptic-scale flow regimes. These relatively narrow and intense regions of water vapor transport can originate in either the tropical or subtropical oceans, and sometimes have been referred to as Pineapple Express events in previous literature when originating near Hawaii. However, the focus of this paper will be on diagnosing the synoptic-scale signatures of all significant water vapor transport events associated with poleward moisture transport impacting the western coast of Canada, regardless of the exact points of origin of the associated atmospheric river. A trajectory analysis is used to partition the events as a means of creating coherent and meaningful synoptic-scale composites. The results indicate that these IWVT events can be clustered by the general area of origin of the majority of the saturated parcels impacting British Columbia and the Yukon Territories. IWVT events associated with more zonal trajectories are characterized by a strong and mature Aleutian low, whereas IWVT events associated with more meridional trajectories are often characterized by an anticyclone situated along the California or Oregon coastline, and a relatively mature poleward-traveling cyclone, commonly originating in the central North Pacific.


When the nature of any saline compound is proposed as the subject of inquiry to an analytic chemist, the questions that occur for his consideration are so varied and so numerous, that he will seldom be disposed to undertake a series of original experiments for the purpose of satisfying his inquiries, so long as he can rely upon the accuracy of those results that have been obtained by the labour of others, who have preceded him in this field of patient investigation. If, for instance, the salt under examination be the common blue vitriol, or crystallized sulphate of copper, the first obvious questions are, (1) How much sulphuric acid does it contain? (2) How much oxide of copper? (3) How much water? He may not be satisfied with these first steps in the analysis, but may desire to know further the quantities (4) of sulphur, (5) of copper, (6) of oxygen, (7) of hydrogen. As means of gaining this information, he naturally considers the quantities of various reagents that may be employed for discovering the quantity of sulphuric acid, (8) how much barytes, (9) carbonate of barytes, or (10) nitrate of barytes, would be requisite for this purpose; (11) How much lead is to be used in the form of (12) nitrate of lead; and when the precipitate of (13) sulphate of barytes or (14) sulphate of lead are obtained, it will be necessary that he should also know the proportion which either of them contains of dry sulphuric acid. He may also endeavour to ascertain the same point by means of (15) the quantity of pure potash, or (16) of carbonate of potash requisite for the precipitation of the copper. He might also use (17) zinc or (18) iron for the same purpose, and he may wish to know the quantities of (19) sulphate of zinc, or (20) sulphate of iron that will then remain in the solution.


2012 ◽  
Vol 25 (23) ◽  
pp. 8238-8258 ◽  
Author(s):  
Johannes Mülmenstädt ◽  
Dan Lubin ◽  
Lynn M. Russell ◽  
Andrew M. Vogelmann

Abstract Long time series of Arctic atmospheric measurements are assembled into meteorological categories that can serve as test cases for climate model evaluation. The meteorological categories are established by applying an objective k-means clustering algorithm to 11 years of standard surface-meteorological observations collected from 1 January 2000 to 31 December 2010 at the North Slope of Alaska (NSA) site of the U.S. Department of Energy Atmospheric Radiation Measurement Program (ARM). Four meteorological categories emerge. These meteorological categories constitute the first classification by meteorological regime of a long time series of Arctic meteorological conditions. The synoptic-scale patterns associated with each category, which include well-known synoptic features such as the Aleutian low and Beaufort Sea high, are used to explain the conditions at the NSA site. Cloud properties, which are not used as inputs to the k-means clustering, are found to differ significantly between the regimes and are also well explained by the synoptic-scale influences in each regime. Since the data available at the ARM NSA site include a wealth of cloud observations, this classification is well suited for model–observation comparison studies. Each category comprises an ensemble of test cases covering a representative range in variables describing atmospheric structure, moisture content, and cloud properties. This classification is offered as a complement to standard case-study evaluation of climate model parameterizations, in which models are compared against limited realizations of the Earth–atmosphere system (e.g., from detailed aircraft measurements).


Sign in / Sign up

Export Citation Format

Share Document