Stepwise Regression Clustering Method in Function Points Estimation

Author(s):  
Petr Silhavy ◽  
Radek Silhavy ◽  
Zdenka Prokopova
Author(s):  
Seetharam .K ◽  
Sharana Basava Gowda ◽  
. Varadaraj

In Software engineering software metrics play wide and deeper scope. Many projects fail because of risks in software engineering development[1]t. Among various risk factors creeping is also one factor. The paper discusses approximate volume of creeping requirements that occur after the completion of the nominal requirements phase. This is using software size measured in function points at four different levels. The major risk factors are depending both directly and indirectly associated with software size of development. Hence It is possible to predict risk due to creeping cause using size.


2019 ◽  
Vol 1 (1) ◽  
pp. 31-39
Author(s):  
Ilham Safitra Damanik ◽  
Sundari Retno Andani ◽  
Dedi Sehendro

Milk is an important intake to meet nutritional needs. Both consumed by children, and adults. Indonesia has many producers of fresh milk, but it is not sufficient for national milk needs. Data mining is a science in the field of computers that is widely used in research. one of the data mining techniques is Clustering. Clustering is a method by grouping data. The Clustering method will be more optimal if you use a lot of data. Data to be used are provincial data in Indonesia from 2000 to 2017 obtained from the Central Statistics Agency. The results of this study are in Clusters based on 2 milk-producing groups, namely high-dairy producers and low-milk producing regions. From 27 data on fresh milk production in Indonesia, two high-level provinces can be obtained, namely: West Java and East Java. And 25 others were added in 7 provinces which did not follow the calculation of the K-Means Clustering Algorithm, including in the low level cluster.


Sign in / Sign up

Export Citation Format

Share Document