Segmentation Of Brain MRI Images For Tumor Detection By Optimizing C-Means Clustering Method

Author(s):  
Kailash Sinha ◽  
◽  
G.R. Sinha ◽  

Brain tumor is an unusual intensification of cells inside the skull. The brain MRI scanned images is segmented to extract brain tumor to analyze type and depth of tumor. In order to reduce the time consumption of brain tumor extraction, an automatic method for detection of brain tumor is highly recommended. Deep machine learning methods are used for automatic detection of the brain tumor in soft tissues at an early stage which involves the following stages namely: image pre-processing, clustering and optimization. This paper addresses previously adduced pre-processing (Skull stripping, Contrast stretching, clustering (k-Means, Fuzzy c-means) and optimization (Cuckoo search optimization, Artificial Bee Colony optimization) strategies for abnormal brain tumor detection from MRI brain images. Performance evaluation is done based on computational time of clustering output and optimization algorithms are analyzed in terms of sensitivity, specificity, and accuracy


2018 ◽  
Vol 6 (9) ◽  
pp. 50-57
Author(s):  
R. Dhatchayini ◽  
K. Mohamed Amanullah

2020 ◽  
Vol 13 (3) ◽  
pp. 362-369 ◽  
Author(s):  
Jyotsna Dogra ◽  
Shruti Jain ◽  
Ashutosh Sharma ◽  
Rajiv Kumar ◽  
Meenakshi Sood

Background: This research aims at the accurate selection of the seed points from the brain MRI image for the detection of the tumor region. Since, the conventional way of manual seed selection leads to inappropriate tumor extraction therefore, fuzzy clustering technique is employed for the accurate seed selection for performing the segmentation through graph cut method. Methods: In the proposed method Fuzzy Kernel Seed Selection technique is used to define the complete brain MRI image into different groups of similar intensity. Among these groups the most accurate kernels are selected empirically that show highest resemblance with the tumor. The concept of fuzziness helps making the selection even at the boundary regions. Results: The proposed Fuzzy kernel selection technique is applied on the BraTS dataset. Among the four modalities, the proposed technique is applied on Flair images. This dataset consists of Low Grade Glioma (LGG) and High Grade Glioma (HGG) tumor images. The experiment is conducted on more than 40 images and validated by evaluating the following performance metrics: 1. Disc Similarity Coefficient (DSC), 2. Jaccard Index (JI) and 3. Positive Predictive Value (PPV). The mean DSC and PPV values obtained for LGG images are 0.89 and 0.87 respectively; and for HGG images it is 0.92 and 0.90 respectively. Conclusion: On comparing the proposed Fuzzy kernel selection graph cut technique approach with the existing techniques it is observed that the former provides an automatic accurate tumor detection. It is highly efficient and can provide a better performance for HGG and LGG tumor segmentation in clinical application.


2021 ◽  
Vol 10 (4) ◽  
pp. 3191-3195
Author(s):  
V Kakulapati

Tumor detection from Brain MRI images Abstract: Detecting tumors in the human brain has become the most challenging medical science issue. Recognition of tumors in MRIs is vital as it offers the aberrant relevant data for therapeutic interventions. MRI includes details on malignant tissue. An abnormal tissue growing and multiplying in the brain is a brain tumor. Physical examination is the standard approach for brain tumor identification, which takes much time and is not accurate every time. So, automated brain tumor identification methods are establishing to save time. Image segmentation utilizes to detect the brain's abnormal portion, which gives the tumor's location. This work uses the UNETS with VGG16 weights model to see and segment tumors from the rest of the brain tissue. The accurate detection of the tumors helps reduce the delay between diagnostic testing and therapy. Therefore, there is a significant demand for computer algorithms to be precise, speedy, time-efficient, and dependable. The technology described relates to detecting and analyzing brain cancers automatically via U-Net and the VGG16 CNN.


Sign in / Sign up

Export Citation Format

Share Document