scholarly journals Distractor-Aware Siamese Networks for Visual Object Tracking

Author(s):  
Zheng Zhu ◽  
Qiang Wang ◽  
Bo Li ◽  
Wei Wu ◽  
Junjie Yan ◽  
...  
2018 ◽  
Vol 77 (17) ◽  
pp. 22131-22143 ◽  
Author(s):  
Longchao Yang ◽  
Peilin Jiang ◽  
Fei Wang ◽  
Xuan Wang

Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 854
Author(s):  
Yuxiang Yang ◽  
Weiwei Xing ◽  
Shunli Zhang ◽  
Qi Yu ◽  
Xiaoyu Guo ◽  
...  

Visual object tracking by Siamese networks has achieved favorable performance in accuracy and speed. However, the features used in Siamese networks have spatially redundant information, which increases computation and limits the discriminative ability of Siamese networks. Addressing this issue, we present a novel frequency-aware feature (FAF) method for robust visual object tracking in complex scenes. Unlike previous works, which select features from different channels or layers, the proposed method factorizes the feature map into multi-frequency and reduces the low-frequency information that is spatially redundant. By reducing the low-frequency map’s resolution, the computation is saved and the receptive field of the layer is also increased to obtain more discriminative information. To further improve the performance of the FAF, we design an innovative data-independent augmentation for object tracking to improve the discriminative ability of tracker, which enhanced linear representation among training samples by convex combinations of the images and tags. Finally, a joint judgment strategy is proposed to adjust the bounding box result that combines intersection-over-union (IoU) and classification scores to improve tracking accuracy. Extensive experiments on 5 challenging benchmarks demonstrate that our FAF method performs favorably against SOTA tracking methods while running around 45 frames per second.


2020 ◽  
pp. 107698
Author(s):  
Shiyu Xuan ◽  
Shengyang Li ◽  
Zifei Zhao ◽  
Longxuan Kou ◽  
Zhuang Zhou ◽  
...  

Author(s):  
Tianyang Xu ◽  
Zhenhua Feng ◽  
Xiao-Jun Wu ◽  
Josef Kittler

AbstractDiscriminative Correlation Filters (DCF) have been shown to achieve impressive performance in visual object tracking. However, existing DCF-based trackers rely heavily on learning regularised appearance models from invariant image feature representations. To further improve the performance of DCF in accuracy and provide a parsimonious model from the attribute perspective, we propose to gauge the relevance of multi-channel features for the purpose of channel selection. This is achieved by assessing the information conveyed by the features of each channel as a group, using an adaptive group elastic net inducing independent sparsity and temporal smoothness on the DCF solution. The robustness and stability of the learned appearance model are significantly enhanced by the proposed method as the process of channel selection performs implicit spatial regularisation. We use the augmented Lagrangian method to optimise the discriminative filters efficiently. The experimental results obtained on a number of well-known benchmarking datasets demonstrate the effectiveness and stability of the proposed method. A superior performance over the state-of-the-art trackers is achieved using less than $$10\%$$ 10 % deep feature channels.


2021 ◽  
Vol 434 ◽  
pp. 268-284
Author(s):  
Muxi Jiang ◽  
Rui Li ◽  
Qisheng Liu ◽  
Yingjing Shi ◽  
Esteban Tlelo-Cuautle

Sign in / Sign up

Export Citation Format

Share Document