Symmetric Tensor Networks

Author(s):  
Simone Montangero
2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Juraj Hasik ◽  
Didier Poilblanc ◽  
Federico Becca

The recent progress in the optimization of two-dimensional tensor networks [H.-J. Liao, J.-G. Liu, L. Wang, and T. Xiang, Phys. Rev. X 9, 031041 (2019)] based on automatic differentiation opened the way towards precise and fast optimization of such states and, in particular, infinite projected entangled-pair states (iPEPS) that constitute a generic-purpose Ansatz for lattice problems governed by local Hamiltonians. In this work, we perform an extensive study of a paradigmatic model of frustrated magnetism, the J_1-J_2J1−J2 Heisenberg antiferromagnet on the square lattice. By using advances in both optimization and subsequent data analysis, through finite correlation-length scaling, we report accurate estimations of the magnetization curve in the N'eel phase for J_2/J_1 \le 0.45J2/J1≤0.45. The unrestricted iPEPS simulations reveal an U(1)U(1) symmetric structure, which we identify and impose on tensors, resulting in a clean and consistent picture of antiferromagnetic order vanishing at the phase transition with a quantum paramagnet at J_2/J_1 \approx 0.46(1)J2/J1≈0.46(1). The present methodology can be extended beyond this model to study generic order-to-disorder transitions in magnetic systems.


Author(s):  
MÁTYÁS DOMOKOS ◽  
VESSELIN DRENSKY

AbstractThe problem of finding generators of the subalgebra of invariants under the action of a group of automorphisms of a finite-dimensional Lie algebra on its universal enveloping algebra is reduced to finding homogeneous generators of the same group acting on the symmetric tensor algebra of the Lie algebra. This process is applied to prove a constructive Hilbert–Nagata Theorem (including degree bounds) for the algebra of invariants in a Lie nilpotent relatively free associative algebra endowed with an action induced by a representation of a reductive group.


Author(s):  
Edgar Solomonik ◽  
James Demmel

AbstractIn matrix-vector multiplication, matrix symmetry does not permit a straightforward reduction in computational cost. More generally, in contractions of symmetric tensors, the symmetries are not preserved in the usual algebraic form of contraction algorithms. We introduce an algorithm that reduces the bilinear complexity (number of computed elementwise products) for most types of symmetric tensor contractions. In particular, it lowers the bilinear complexity of symmetrized contractions of symmetric tensors of order {s+v} and {v+t} by a factor of {\frac{(s+t+v)!}{s!t!v!}} to leading order. The algorithm computes a symmetric tensor of bilinear products, then subtracts unwanted parts of its partial sums. Special cases of this algorithm provide improvements to the bilinear complexity of the multiplication of a symmetric matrix and a vector, the symmetrized vector outer product, and the symmetrized product of symmetric matrices. While the algorithm requires more additions for each elementwise product, the total number of operations is in some cases less than classical algorithms, for tensors of any size. We provide a round-off error analysis of the algorithm and demonstrate that the error is not too large in practice. Finally, we provide an optimized implementation for one variant of the symmetry-preserving algorithm, which achieves speedups of up to 4.58\times for a particular tensor contraction, relative to a classical approach that casts the problem as a matrix-matrix multiplication.


Author(s):  
Michael Atiyah ◽  
Matilde Marcolli

Abstract This paper, completed in its present form by the second author after the first author passed away in 2019, describes an intended continuation of the previous joint work on anyons in geometric models of matter. This part outlines a construction of anyon tensor networks based on four-dimensional orbifold geometries and braid representations associated with surface-braids defined by multisections of the orbifold normal bundle of the surface of orbifold points.


Sign in / Sign up

Export Citation Format

Share Document