Joint Application of Group Determination of Parameters and of Training with Noise Addition to Improve the Resilience of the Neural Network Solution of the Inverse Problem in Spectroscopy to Noise in Data

Author(s):  
Igor Isaev ◽  
Sergey Burikov ◽  
Tatiana Dolenko ◽  
Kirill Laptinskiy ◽  
Alexey Vervald ◽  
...  
F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 646
Author(s):  
Dániel Leitold ◽  
Ágnes Vathy-Fogarassy ◽  
János Abonyi

The network science-based determination of driver nodes and sensor placement has become increasingly popular in the field of dynamical systems over the last decade. In this paper, the applicability of the methodology in the field of life sciences is introduced through the analysis of the neural network of Caenorhabditis elegans. Simultaneously, an Octave and MATLAB-compatible NOCAD toolbox is proposed that provides a set of methods to automatically generate the relevant structural controllability and observability associated measures for linear or linearised systems and compare the different sensor placement methods.


2006 ◽  
Vol 60 (1) ◽  
Author(s):  
I. Malík ◽  
E. Sedlárová ◽  
J. Csöllei ◽  
F. Andriamainty ◽  
P. Kurfürst ◽  
...  

AbstractThe phenylcarbamic acid derivatives with N-phenylpiperazine moiety in the molecule have been prepared. The structure has been confirmed by elemental analysis, IR, 1H NMR, and mass spectral data. For the prepared set of the compounds the lipophilicity parameters have been determined. The experimentally obtained lipophilicity parameters have been correlated with theoretical entries obtained by different computer programs based on the neural network and fragmental methods.


2011 ◽  
Vol 121-126 ◽  
pp. 382-386
Author(s):  
Yi Jun Chen ◽  
Qing Hai Zhao

In this paper, the nonlinear mapping relationship between characteristic parameters of failures and failure types is realized by using neural network through extracting characteristic variables of failures during operation of the gear. Aiming at the problems of neutral network such as slow convergence speed and existence of local minima, the neural network is optimized and the ant colony neural network is established by using the ant colony algorithm to realize rapid and accurate determination of failure status of a gear from characteristic parameters of failures. In addition, validity of the established model is verified through experiments.


2017 ◽  
Vol 34 (2) ◽  
pp. e12192 ◽  
Author(s):  
Weidong Zhu ◽  
Youhua Xu ◽  
Yong Wu ◽  
Yibo Sun

Sign in / Sign up

Export Citation Format

Share Document