Group Determination of Parameters and Training with Noise Addition: Joint Application to Improve the Resilience of the Neural Network Solution of a Model Inverse Problem to Noise in Data

Author(s):  
Igor Isaev ◽  
Sergey Dolenko
F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 646
Author(s):  
Dániel Leitold ◽  
Ágnes Vathy-Fogarassy ◽  
János Abonyi

The network science-based determination of driver nodes and sensor placement has become increasingly popular in the field of dynamical systems over the last decade. In this paper, the applicability of the methodology in the field of life sciences is introduced through the analysis of the neural network of Caenorhabditis elegans. Simultaneously, an Octave and MATLAB-compatible NOCAD toolbox is proposed that provides a set of methods to automatically generate the relevant structural controllability and observability associated measures for linear or linearised systems and compare the different sensor placement methods.


2020 ◽  
Vol 73 (7) ◽  
pp. 1499-1504
Author(s):  
Oleksandr A. Udod ◽  
Hanna S. Voronina ◽  
Olena Yu. Ivchenkova

The aim: of the work was to develop and apply in the clinical trial a software product for the dental caries prediction based on neural network programming. Materials and methods: Dental examination of 73 persons aged 6-7, 12-15 and 35-44 years was carried out. The data obtained during the survey were used as input for the construction and training of the neural network. The output index was determined by the increase in the intensity of caries, taking into account the number of cavities. To build a neural network, a high-level Python programming language with the NumPay extension was used. Results: The intensity of carious dental lesions was the highest in 35-44 years old patients – 6.69 ± 0.38, in 6-7 years old children and 12-15 years old children it was 3.85 ± 0.27 and 2.15 ± 0.24, respectively (p <0.05). After constructing and training the neural network, 61 true and 12 false predictions were obtained based on these indices, the accuracy of predicting the occurrence of caries was 83.56%. Based on these results, a graphical user interface for the “CariesPro” software application was created. Conclusions: The resulting neural network and the software product based on it permit to predict the development of dental caries in persons of all ages with a probability of 83.56%.


2006 ◽  
Vol 60 (1) ◽  
Author(s):  
I. Malík ◽  
E. Sedlárová ◽  
J. Csöllei ◽  
F. Andriamainty ◽  
P. Kurfürst ◽  
...  

AbstractThe phenylcarbamic acid derivatives with N-phenylpiperazine moiety in the molecule have been prepared. The structure has been confirmed by elemental analysis, IR, 1H NMR, and mass spectral data. For the prepared set of the compounds the lipophilicity parameters have been determined. The experimentally obtained lipophilicity parameters have been correlated with theoretical entries obtained by different computer programs based on the neural network and fragmental methods.


2004 ◽  
Vol 4 (1) ◽  
pp. 143-146 ◽  
Author(s):  
D. J. Lary ◽  
M. D. Müller ◽  
H. Y. Mussa

Abstract. Neural networks are ideally suited to describe the spatial and temporal dependence of tracer-tracer correlations. The neural network performs well even in regions where the correlations are less compact and normally a family of correlation curves would be required. For example, the CH4-N2O correlation can be well described using a neural network trained with the latitude, pressure, time of year, and CH4 volume mixing ratio (v.m.r.). In this study a neural network using Quickprop learning and one hidden layer with eight nodes was able to reproduce the CH4-N2O correlation with a correlation coefficient between simulated and training values of 0.9995. Such an accurate representation of tracer-tracer correlations allows more use to be made of long-term datasets to constrain chemical models. Such as the dataset from the Halogen Occultation Experiment (HALOE) which has continuously observed CH4  (but not N2O) from 1991 till the present. The neural network Fortran code used is available for download.


Author(s):  
Е. Ерыгин ◽  
E. Erygin ◽  
Т. Дуюн ◽  
T. Duyun

This article describes the task of predicting roughness when finishing milling using neural network modeling. As a basis for the creation and training of an artificial neural network, a progressive formu-la for determining the roughness during finishing milling is chosen. The thermoEMF of the processing and processed materials is used as one of the parameters for calculating the roughness. The use of thermoEMF allows to take into account the material of the workpiece and the cutting tool, which af-fects the accuracy of the results. A training sample is created with data for five inputs and one output. The architecture, features and network learning algorithm are described. A neural network that de-termines the roughness for finishing milling has been created and configured. The process of learning and debugging of the neural network by means of graphs is clearly displayed. The network operability is checked on the test data, which allows obtaining positive results.


Author(s):  
Krasimir Ognyanov Slavyanov

This article offers a neural network method for automatic classification of Inverse Synthetic Aperture Radar objects represented in images with high level of post-receive optimization. A full explanation of the procedures of two-layer neural network architecture creating and training is described. The classification in the recognition stage is proposed, based on several main classes or sets of flying objects. The classification sets are designed according to distinctive specifications in the structural models of the aircrafts. The neural network is experimentally simulated in MATLAB environment. Numerical results of the experiments carried, prove the correct classification of the objects in ISAR optimized images.


Sign in / Sign up

Export Citation Format

Share Document