2-D Resistivity Model of Magnetotelluric Inversion from M’rara Area, Algerian Sahara‏

Author(s):  
Djabir Foudili ◽  
Abderrezak Bouzid ◽  
Mohamed Chérif Berguig
2019 ◽  
Vol 219 (3) ◽  
pp. 2056-2072
Author(s):  
A Carrier ◽  
F Fischanger ◽  
J Gance ◽  
G Cocchiararo ◽  
G Morelli ◽  
...  

SUMMARY The growth of the geothermal industry sector requires innovative methods to reduce exploration costs whilst minimizing uncertainty during subsurface exploration. Until now geoelectrical prospection had to trade between logistically complex cabled technologies reaching a few hundreds meters deep versus shallow-reaching prospecting methods commonly used in hydro-geophysical studies. We present a recent technology for geoelectrical prospection, and show how geoelectrical methods may allow the investigation of medium-enthalpy geothermal resources until about 1 km depth. The use of the new acquisition system, which is made of a distributed set of independent electrical potential recorders, enabled us to tackle logistics and noise data issues typical of urbanized areas. We acquired a 4.5-km-long 2-D geoelectrical survey in an industrial area to investigate the subsurface structure of a sedimentary sequence that was the target of a ∼700 m geothermal exploration well (Geo-01, Satigny) in the Greater Geneva Basin, Western Switzerland. To show the reliability of this new method we compared the acquired resistivity data against reflection seismic and gravimetric data and well logs. The processed resistivity model is consistent with the interpretation of the active-seismic data and density variations computed from the inversion of the residual Bouguer anomaly. The combination of the resistivity and gravity models suggest the presence of a low resistivity and low density body crossing Mesozoic geological units up to Palaeogene–Neogene units that can be used for medium-enthalpy geothermal exploitation. Our work points out how new geoelectrical methods may be used to identify thermal groundwater at depth. This new cost-efficient technology may become an effective and reliable exploration method for the imaging of shallow geothermal resources.


2020 ◽  
Author(s):  
Tianqi Wang ◽  
Guoqing Ma ◽  
Jiangtao Han ◽  
Wenyu Liu ◽  
Zikun Zhou ◽  
...  

Author(s):  
Wenxin Kong ◽  
Handong Tan ◽  
Changhong Lin ◽  
Martyn Unsworth ◽  
Benjamin Lee ◽  
...  

2021 ◽  
Author(s):  
Sabyasachi Dash ◽  
◽  
Zoya Heidari ◽  

Conventional resistivity models often overestimate water saturation in organic-rich mudrocks and require extensive calibration efforts. Conventional resistivity-porosity-saturation models assume brine in the formation as the only conductive component contributing to resistivity measurements. Enhanced resistivity models for shaly-sand analysis include clay concentration and clay-bound water as contributors to electrical conductivity. These shaly-sand models, however, consider the existing clay in the rock as dispersed, laminated, or structural, which does not reliably describe the distribution of clay network in organic-rich mudrocks. They also do not incorporate other conductive minerals and organic matter, which can significantly impact the resistivity measurements and lead to uncertainty in water saturation assessment. We recently introduced a method that quantitatively assimilates the type and spatial distribution of all conductive components to improve reserves evaluation in organic-rich mudrocks using electrical resistivity measurements. This paper aims to verify the reliability of the introduced method for the assessment of water/hydrocarbon saturation in the Wolfcamp formation of the Permian Basin. Our recently introduced resistivity model uses pore combination modeling to incorporate conductive (clay, pyrite, kerogen, brine) and non-conductive (grains, hydrocarbon) components in estimating effective resistivity. The inputs to the model are volumetric concentrations of minerals, the conductivity of rock components, and porosity obtained from laboratory measurements or interpretation of well logs. Geometric model parameters are also critical inputs to the model. To simultaneously estimate the geometric model parameters and water saturation, we develop two inversion algorithms (a) to estimate the geometric model parameters as inputs to the new resistivity model and (b) to estimate the water saturation. Rock type, pore structure, and spatial distribution of rock components affect geometric model parameters. Therefore, dividing the formation into reliable petrophysical zones is an essential step in this method. The geometric model parameters are determined for each rock type by minimizing the difference between the measured resistivity and the resistivity, estimated from Pore Combination Modeling. We applied the new rock physics model to two wells drilled in the Permian Basin. The depth interval of interest was located in the Wolfcamp formation. The rock-class-based inversion showed variation in geometric model parameters, which improved the assessment of water saturation. Results demonstrated that the new method improved water saturation estimates by 32.1% and 36.2% compared to Waxman-Smits and Archie's models, respectively, in the Wolfcamp formation. The most considerable improvement was observed in the Middle and Lower Wolfcamp formation, where the average clay concentration was relatively higher than the other zones. Results demonstrated that the proposed method was shown to improve the estimates of hydrocarbon reserves in the Permian Basin by 33%. The hydrocarbon reserves were underestimated by an average of 70000 bbl/acre when water saturation was quantified using Archie's model in the Permian Basin. It should be highlighted that the new method did not require any calibration effort to obtain model parameters for estimating water saturation. This method minimizes the need for extensive calibration efforts for the assessment of hydrocarbon/water saturation in organic-rich mudrocks. By minimizing the need for extensive calibration work, we can reduce the number of core samples acquired. This is the unique contribution of this rock-physics-based workflow.


2009 ◽  
Vol 52 (6) ◽  
pp. 1360-1368 ◽  
Author(s):  
Luo-Lei ZHANG ◽  
Peng YU ◽  
Jia-Lin WANG ◽  
Jian-Sheng WU

1964 ◽  
Vol 4 (04) ◽  
pp. 285-290
Author(s):  
Edward P. Miesch ◽  
Paul B. Crawford

Abstract A study was made of the effect of permeable and impermeable lenses in a reservoir on the production capacity of a well. Both steady-state and unsteady-state data were obtained. An electrical resistivity model was used to obtain the steady- state data and thermal models were constructed to obtain the unsteady-state data. The productivity of a well is affected very greatly only when the lenses are close to the well. The effect of circular lenses on the Productivity ratio can be correlated with the distance from the center of the lens to the center of the well divided by the radius of the lens. Then this dimensionless distance is equal to six or greater, the effect of the lenses on production capacity will be negligible. The pseudo steady-state productivity of a heterogeneous reservoir can be predicted using steady- state data. Introduction Many analytical solutions of reservoir behavior assume that reservoir rock is uniform and homogeneous. Although this assumption is used, all of the data from core analyses and well logging indicate that the reservoirs are heterogeneous. Very little work has been done on the performance of heterogeneous reservoirs. The work of Landrum, et al. showed that transient phenomena in oil reservoirs could be studied with thermal models. Pickering and Cotman used thermal models to study flow in stratified reservoirs and investigated the effect of inhomogeneities in oil reservoirs on transient flow performance. Loucks made a mathematical study of the pressure build-up in a system composed of two concentric regions of different permeability. Root, Silberberg and Pirson studied the effect of me growth of the flooded region on water influx predictions using a thermal model consisting of three concentric cylindrical regions of different thermal properties which simulated the aquifer, the flooded region and the unflooded portion of the original hydrocarbon region. Tomme, et al. made a mathematical study of vertical fractures. The object of this investigation was to study the effect of highly permeable and impermeable lenses in the vicinity of the wellbore on the pressure depletion history of the well. Steady- state data were obtained for both conductive and nonconductive lenses that completely penetrated the formation. The lenses were symmetrically located at various distances from the wellbore. The unsteady-state data were obtained on seven thermal models. EXPERIMENTAL EQUIPMENT AND PROCEDURE STEADY-STATE DATA The steady-state data were obtained from an electrical resistivity model 30 in. in diameter and approximately 1 1/2 in. deep. The outside of the model was lined with a 30-in. diameter copper strip, which served as the outer boundary of the reservoir. The bottom was covered with a sheet of plexiglass so that it would be nonconductive. The model was filled with a slightly saline solution. The well size was varied from an 0.064-in. diameter copper wire to a 10-in. diameter copper cylinder. Readings were taken with an impedance bridge using AC current to prevent polarization at the contacts. Copper and wax lenses were used to represent infinitely conductive and nonconductive lenses, respectively. The resistance was first measured for each well diameter with no lenses in the reservoir. Then the conductive and nonconductive lenses were spaced symmetrically at various distances from the well and the resistance read from each lens location. The diameters of the conductive lenses were 3, 1.022 and 0.624 in., and those of the nonconductive lenses were 3, 2.25 and 1.563 in. SPEJ P. 285ˆ


Sign in / Sign up

Export Citation Format

Share Document