resistivity method
Recently Published Documents


TOTAL DOCUMENTS

643
(FIVE YEARS 215)

H-INDEX

26
(FIVE YEARS 4)

Author(s):  
Rahmaniah ◽  
Ayusari Wahyuni ◽  
Muhammad Fauzy Ismullah Massinai ◽  
Abdul Mun'im ◽  
Muhammad Altin Massinai

The data presented in this paper are related to the characterization of a subsurface layer of coastal area in South Sulawesi. This research will fill the gap in the resistivity method study which is this method not yet use in the coastlines area, especially area influenced by seawater and coastal condition impact like South Sulawesi. The method used in this study is the method of resistivity Wenner configuration by taking the data 1-2 lines each region with lengths 45 m, 75 m, 105 m, and 120 m respectively. Data processing using non-linear least square optimization with that of the 2D inversion software Res2Dinv. The results show that the area is underlain by two layers of lithologic sections. In some sections interpreted by sandy layer, clay, sandstone, alluvium, sandy in seawater and metal minerals. From the analysis of the layers, all regions show the resistivity minimum is 0.00849 Ωm and 8.04 Ωm maximum resistivity. The result of this research can give n insight to study the large coastal area subsurface.


2021 ◽  
Vol 8 (12) ◽  
pp. 411-417
Author(s):  
Adediran Olanrewaju Adegoke ◽  
E. Rotimi Olafisoye ◽  
Oluwatoyin Ologe

Electrical resistivity method was used to carry out hydrogeophysical study in order to evaluate the groundwater potential of Igarra Comprehensive High School, Akoko Edo Local Government, Nigeria. The vertical electrical sounding technique (VES) was adopted for the resistivity method. A total of eighteen electrical soundings were conducted across the area using the Schlumberger electrode array with AB/2 varying from 1 to 65 m. After the data acquisition, interpretation was carried out qualitatively and quantitatively and the results were presented as sounding curves, tables, charts, maps and geoelectric sections. The generated geoelectric layers from the sounding curves revealed four geologic layers: the topsoil, the weathered layer, the partially weathered/fractured basement and the fresh basement with their resistivity values ranging from 129.1 to 956.4 -m, 6.8 to 1491.1 -m, 261.3 to 776.6 -m and 1515.6 to 2653.5 -m respectively. The overburden thickness in the study area varies from 5.5 to 23.5 m. The groundwater potential map enabled in the classification of the study area into: low, medium and high groundwater potential area. About 85% of the study area falls within the low groundwater potential rating while about 10% constitutes the medium groundwater potential rating and the remaining 5% constitutes high groundwater potential rating. Keywords: Groundwater, overburden, electrical resistivity, basement, geoelectric sounding.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Daiming Hu ◽  
Bülent Tezkan ◽  
Mingxin Yue ◽  
Xiaodong Yang ◽  
Xiaoping Wu ◽  
...  

Water inrush in tunneling poses serious harm to safe construction, causing economic losses and casualties. The prediction of water hazards before tunnel excavations becomes an urgent task for governments or enterprises to ensure security. The three-dimensional (3D) direct current (DC) resistivity method is widely used in the forward-probing of tunnels because of its low cost and highly sensitive response to water-bearing structures. However, the different sizes of the tunnel will distort the distribution of the potential field, which causes an inaccurate prediction of water-bearing structures in front of the tunnels. Some studies have pointed out that the tunnel effect must be considered in the quantitative interpretation of the data. However, there is rarely a predicted model considering the tunnel effect to be reported in geophysical literature. We developed a predicted model algorithm by considering the tunnel effect for forward-probing in tunnels. The algorithm is proven to be feasible using a slab analytic model. By simulating a large number of models with different tunnel sizes, we propose an equation, which considers the tunnel effect and can predict the water-bearing structures ahead of the tunnel face. The Monte Carlo method is used to evaluate the quality of the predicted model by simulating and comparing 10,000 random models. The results show that the proposed method is accurate to forecast the water-rich structures with small errors.


2021 ◽  
Vol 1 (2) ◽  
pp. 109-122
Author(s):  
Besse Nurul Luthfiani Azis ◽  
Ketut Arya Wikranta ◽  
Nur Siti Anifah ◽  
Wihdah Syamsiyah Q Syamsiyah Q ◽  
Dirga Wahyuzar

Kabupaten Bantul merupakan salah satu kabupaten yang berpotensi terjadi tanah longsor, tepatnya di daerah Srimartani, Kecamatan Piyungan. Penelitian ini dilakukan dengan tujuan untuk mendapatkan data dan informasi mengenai parameter metode geofisika daerah longsor dan mengetahui dugaan zona potensi longsor. Metode yang digunakan dalam penelitian ini adalah survei lokasi, akuisisi metode seismik refraksi, akuisisi metode resistivitas, dan pemetaan foto udara (geospasial). Dari penampang bawah permukaan seismik refraksi metode hagiwara didapatkan bahwa lapisan lapuk pada daerah riset berupa soil dan pasir tuffan dikarenakan memiliki sifat permeable dan bidang gelincirnya yang bersifat impermeable. Pada penampang bawah metode seismik refraksi lapisan pertama yaitu soil dengan kecepatan V1 sekitar 313.8 m/s – 461.6 m/s dan lapisan kedua yaitu pasir dengan kecepatan V2 sekitar 459 m/s – 1567 m/s. Sementara penampang bawah permukaan metode resistivitas konfigurasi dipole – dipole didapatkan lapisan lapuk tersebut memiliki nilai resitivitas yang kecil dikarenakan lapisan tersebut bersifat lunak sehingga ada kemungkinan lapisan tersebut dalam kondisi basah. Pada penampang resistivitas memiliki nilai 126 ohm.m hingga lebih dari 301 ohm.m, daerah tersebut diperkirakan terdapat batuan breksi batuapung dari formasi semilir yang diduga sebagai bidang gelincir. Dari segi geologi, daerah penelitian sangat rentan terjadi tanah longsor dikarenakan kondisi lereng searah dengan kondisi struktur regional di daerah penelitian yaitu barat-timur, didukung oleh kondisi batuan yang ada berupa breksi batuapung dan tuff yang sangat rawan terjadi longsor. Dengan adanya penelitian ini, diharapkan dapat menambah pengetahuan mengenai antisipasi masyarakat dalam meminimalisir dampak yang ditimbulkan dari adanya tanah longsor. Bantul Regency is one of the districts that have the potential for landslides to occur, precisely in the Srimartani area, Piyungan District. This research was conducted with the aim of obtaining data and information about the parameters of the geophysical method of landslide areas and knowing the alleged landslide potential zone. The methods used in this research are site survey, seismic refraction acquisition method, resistivity method acquisition, and aerial photography (geospatial) mapping. From the subsurface seismic refraction of the Hagiwara method, it was found that the weathered layer in the research area was soil and sand due to its permeable properties and impermeable slip plane. . In the lower section of the seismic refraction method, the first layer is soil with a V1 velocity of around 313.8 m/s – 461.6 m/s and the second layer is sand with a V2 velocity of about 459 m/s – 1567 m/s. While the subsurface resistivity method of the dipole - dipole configuration found that the weathered layer has a small resistivity value because the layer is soft so there is a possibility that the layer is in a wet conditionIn the cross section resistivity has a value of 126 ohm.m to more than 301 ohm.m, the area is estimated to contain pumice breccia from the breccia formation which is thought to be a slip plane. In terms of geology, the research area is very susceptible to landslides because the slope conditions are in line with the regional structural conditions in the research area, namely west-east, supported by the existing rock conditions in the form of pumice breccia and tuff which are very prone to landslides. With this research, it is hoped that it can increase knowledge about community anticipation in minimizing the impact of landslides.


Author(s):  
Syazwan Aiman Sufiyanussuari ◽  
◽  
Saiful Azhar Ahmad Tajudin ◽  
Mohammad Izzat Shaffiq Azmi ◽  
Muhammad Nur Hidayat Zahari ◽  
...  

Geophysical electrical resistivity method has been one of the more popular non-destructive method to explore the subsurface. Geophysical electrical resistivity tomography (ERT) subsurface profiling was conducted to map the groundwater path along the embankment. The groundwater path able to decrease the slope stability, thus its need to locate the position for conduct the slope remediation via subsoil drainage. In this study, Terrameter LS2 model, electrodes, cables, battery, and cable connectors were the equipment used for measurement. This study uses cable spread line at 200m with 2.5m spacing between electrodes by using gradient protocol. The resistivity data was analyzed using RES2DINV software. The interpretation of groundwater path is based on the resistivity values less than 100 ohm.m, which is interpreted as saturated materials. This study demonstrates the efficiency of application of electrical resistivity tomography (ERT) in detecting the groundwater pathways. This investigation will help in sustaining the slope stability via indicating the position of groundwater pathways, and thus implementing the slope remediation work.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
J. Vinoth Kingston ◽  
A. Antony Ravindran ◽  
S. Richard Abishek ◽  
S. K. Aswin ◽  
A. Antony Alosanai Promilton

AbstractSubmarine groundwater discharge (SGD) study is essential for groundwater in coastal terrace at Tiruchendur. The famous Murugan Temple is located in the area and around 25,000 people who visit this temple use the SGD well water at NaaliKinaru (a small open well) as holy water and drink it. The rock and soil type are sandy clay, silt, beach sand, calcarenite, kankar, gneissic rock and charnockite in base rock. Megascopic identification method was used to identify the porous and permeable rocks such as calcarenite, sandstone and kankar to support to increase SGD flux. Grain size study was used to identify the paleo-coastal estuarine environment with sediment deposits in the terrace. The square array electrical resistivity method was used to study the subsurface geology and aquifer depth. The 2d ERT technique was used to identify the subsurface shallow perched aquifer of freshwater. The magnetotelluric survey method was used to scan the entire subsurface geological and tectonic uplift, coastal ridges, rock folded subsurface structural features of continental and oceanic tectonism. Darcy’s law was used to calculate the SGD flux rate in the above study area.


2021 ◽  
Vol 1 (2) ◽  
pp. 49-62
Author(s):  
Babatunde A. Adebo ◽  
Oladipupo Emmanuel Makinde ◽  
Stephen Olubusola Ilugbo

This research was carried out within Institute of Agriculture Research and Training Moor Plantation Ibadan, Southwestern Nigeria, with the aim to ascertain suitability of the proposed site for building construction and usage. The geophysical investigation involved three electrical resistivity techniques; Vertical Electrical Sounding (VES) using the Schlumberger configuration, 2D ERT and 2-D electrical imaging using Dipole-dipole electrode configuration. Two traverses were established E–W direction cutting across geologic strike with a distance of 80 m and of varying inter-traverse spacing. Eight (8) VES stations were occupied covering the entire study area for layer stratification and geoelectric parameters. The results were qualitatively and quantitatively interpreted and are presented as sounding curves and geoelectric sections. The 2-D imaging gave information on the subsurface characteristic in the area with generally low apparent resistivity indicating low competence material. The results obtained from the VES delineate three geoelectric units which comprise of the topsoil, weathered layer and fresh basement. The results from the VES were used to determine the second order parameters. The entire results correlate well with one another showing that all the techniques used were complemented. This study has further justified the need for geophysical site investigation as pre-condition before any construction to avoid problems of differential settlement. In determining of foundation material, topography elevation, clay content and the depth of weak zones should be put into consideration, since the depth of the weak zone is appreciably high.


2021 ◽  
Vol 54 (2E) ◽  
pp. 122-133
Author(s):  
Raad Eissa

Maintenance of existing structures and development or reuse of brownfield sites need to determine buried foundations, in terms of location and dimensions, as accurately as possible. Geophysical methods provide an indirect way to look in the ground and provide information about the subsurface that the traditional methods might be unable to. In particular, the electrical resistivity method has been performed in the context of buried foundation surveys. This review spots the light on the main results obtained from utilizing the electrical resistivity method and the most affecting parameters that can influence the obtained resistivity models, and also, focuses on published case studies to merge their findings to understand the interaction among the method, the foundation and the hosting background for buried foundations surveys. The case studies mentioned in this review show the resistivity method's success and highlight the most important parameters that can control the method’s applicability and data interpretation. The integration of the geophysical-traditional methods has appreciable potential for more accurate findings.


Sign in / Sign up

Export Citation Format

Share Document