scholarly journals From Modular Forms to Differential Equations for Feynman Integrals

Author(s):  
Johannes Broedel ◽  
Claude Duhr ◽  
Falko Dulat ◽  
Brenda Penante ◽  
Lorenzo Tancredi
2018 ◽  
Vol 12 (2) ◽  
pp. 193-251 ◽  
Author(s):  
Luise Adams ◽  
Stefan Weinzierl

2020 ◽  
Vol 16 (05) ◽  
pp. 1111-1152
Author(s):  
Cameron Franc ◽  
Geoffrey Mason

This paper studies modular forms of rank four and level one. There are two possibilities for the isomorphism type of the space of modular forms that can arise from an irreducible representation of the modular group of rank four, and we describe when each case occurs for general choices of exponents for the [Formula: see text]-matrix. In the remaining sections we describe how to write down the corresponding differential equations satisfied by minimal weight forms, and how to use these minimal weight forms to describe the entire graded module of holomorphic modular forms. Unfortunately, the differential equations that arise can only be solved recursively in general. We conclude the paper by studying the cases of tensor products of two-dimensional representations, symmetric cubes of two-dimensional representations, and inductions of two-dimensional representations of the subgroup of the modular group of index two. In these cases, the differential equations satisfied by minimal weight forms can be solved exactly.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Samuel Abreu ◽  
Ruth Britto ◽  
Claude Duhr ◽  
Einan Gardi ◽  
James Matthew

Abstract The diagrammatic coaction maps any given Feynman graph into pairs of graphs and cut graphs such that, conjecturally, when these graphs are replaced by the corresponding Feynman integrals one obtains a coaction on the respective functions. The coaction on the functions is constructed by pairing a basis of differential forms, corresponding to master integrals, with a basis of integration contours, corresponding to independent cut integrals. At one loop, a general diagrammatic coaction was established using dimensional regularisation, which may be realised in terms of a global coaction on hypergeometric functions, or equivalently, order by order in the ϵ expansion, via a local coaction on multiple polylogarithms. The present paper takes the first steps in generalising the diagrammatic coaction beyond one loop. We first establish general properties that govern the diagrammatic coaction at any loop order. We then focus on examples of two-loop topologies for which all integrals expand into polylogarithms. In each case we determine bases of master integrals and cuts in terms of hypergeometric functions, and then use the global coaction to establish the diagrammatic coaction of all master integrals in the topology. The diagrammatic coaction encodes the complete set of discontinuities of Feynman integrals, as well as the differential equations they satisfy, providing a general tool to understand their physical and mathematical properties.


2007 ◽  
Vol 22 (24) ◽  
pp. 4375-4436 ◽  
Author(s):  
MARIO ARGERI ◽  
PIERPAOLO MASTROLIA

We review in a pedagogical way the method of differential equations for the evaluation of D-dimensionally regulated Feynman integrals. After dealing with the general features of the technique, we discuss its application in the context of one- and two-loop corrections to the photon propagator in QED, by computing the Vacuum Polarization tensor exactly in D. Finally, we treat two cases of less trivial differential equations, respectively associated to a two-loop three-point, and a four-loop two-point integral. These two examples are the playgrounds for showing more technical aspects about: Laurent expansion of the differential equations in D (around D = 4); the choice of the boundary conditions; and the link among differential and difference equations for Feynman integrals.


2020 ◽  
Vol 80 (12) ◽  
Author(s):  
Wen Chen

AbstractPhase space cuts are implemented by inserting Heaviside theta functions in the integrands of momentum-space Feynman integrals. By directly parametrizing theta functions and constructing integration-by-parts (IBP) identities in the parametric representation, we provide a systematic method to reduce integrals with cuts. Since the IBP method is available, it becomes possible to evaluate integrals with cuts by constructing and solving differential equations.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Song He ◽  
Zhenjie Li ◽  
Qinglin Yang

Abstract We propose that the symbol alphabet for classes of planar, dual-conformal-invariant Feynman integrals can be obtained as truncated cluster algebras purely from their kinematics, which correspond to boundaries of (compactifications of) G+(4, n)/T for the n-particle massless kinematics. For one-, two-, three-mass-easy hexagon kinematics with n = 7, 8, 9, we find finite cluster algebras D4, D5 and D6 respectively, in accordance with previous result on alphabets of these integrals. As the main example, we consider hexagon kinematics with two massive corners on opposite sides and find a truncated affine D4 cluster algebra whose polytopal realization is a co-dimension 4 boundary of that of G+(4, 8)/T with 39 facets; the normal vectors for 38 of them correspond to g-vectors and the remaining one gives a limit ray, which yields an alphabet of 38 rational letters and 5 algebraic ones with the unique four-mass-box square root. We construct the space of integrable symbols with this alphabet and physical first-entry conditions, whose dimension can be reduced using conditions from a truncated version of cluster adjacency. Already at weight 4, by imposing last-entry conditions inspired by the n = 8 double-pentagon integral, we are able to uniquely determine an integrable symbol that gives the algebraic part of the most generic double-pentagon integral. Finally, we locate in the space the n = 8 double-pentagon ladder integrals up to four loops using differential equations derived from Wilson-loop d log forms, and we find a remarkable pattern about the appearance of algebraic letters.


2012 ◽  
Vol 55 (2) ◽  
pp. 400-409 ◽  
Author(s):  
Abdellah Sebbar ◽  
Ahmed Sebbar

AbstractThe purpose of this paper is to solve various differential equations having Eisenstein series as coefficients using various tools and techniques. The solutions are given in terms of modular forms, modular functions, and equivariant forms.


Sign in / Sign up

Export Citation Format

Share Document