A Parallel Fast Fourier Transform Algorithm for Large-Scale Signal Data Using Apache Spark in Cloud

Author(s):  
Cheng Yang ◽  
Weidong Bao ◽  
Xiaomin Zhu ◽  
Ji Wang ◽  
Wenhua Xiao
2020 ◽  
Vol 223 (2) ◽  
pp. 1378-1397
Author(s):  
Rosemary A Renaut ◽  
Jarom D Hogue ◽  
Saeed Vatankhah ◽  
Shuang Liu

SUMMARY We discuss the focusing inversion of potential field data for the recovery of sparse subsurface structures from surface measurement data on a uniform grid. For the uniform grid, the model sensitivity matrices have a block Toeplitz Toeplitz block structure for each block of columns related to a fixed depth layer of the subsurface. Then, all forward operations with the sensitivity matrix, or its transpose, are performed using the 2-D fast Fourier transform. Simulations are provided to show that the implementation of the focusing inversion algorithm using the fast Fourier transform is efficient, and that the algorithm can be realized on standard desktop computers with sufficient memory for storage of volumes up to size n ≈ 106. The linear systems of equations arising in the focusing inversion algorithm are solved using either Golub–Kahan bidiagonalization or randomized singular value decomposition algorithms. These two algorithms are contrasted for their efficiency when used to solve large-scale problems with respect to the sizes of the projected subspaces adopted for the solutions of the linear systems. The results confirm earlier studies that the randomized algorithms are to be preferred for the inversion of gravity data, and for data sets of size m it is sufficient to use projected spaces of size approximately m/8. For the inversion of magnetic data sets, we show that it is more efficient to use the Golub–Kahan bidiagonalization, and that it is again sufficient to use projected spaces of size approximately m/8. Simulations support the presented conclusions and are verified for the inversion of a magnetic data set obtained over the Wuskwatim Lake region in Manitoba, Canada.


2004 ◽  
Author(s):  
L. Ricard ◽  
M. Le Ravalec-Dupin ◽  
B. Noetinger ◽  
Y. Guéguen

1980 ◽  
Vol 17 (3) ◽  
pp. 284-284
Author(s):  
Robert J. Meir ◽  
Sathyanarayan S. Rao

This paper presents a full and well-developed view of the Fast Fourier Transform (FFT). It is intended for the reader who wishes to learn and develop his own fast Fourier algorithm. The approach presented here utilizes the matrix description of fast Fourier transforms. This approach leads to a systematic method for greatly reducing the complexity and the space required by variety of signal flow graph descriptions. This reduced form is called SNOCRAFT. From this representation, it is then shown how one can derive all possible fast Fourier transform algorithms, including the Weinograd Fourier transform algorithm. It is also shown from the SNOCRAFT representation that one can easily compute the number of multiplications and additions required to perform a specified fast Fourier transform algorithm. After an elementary introduction to matrix representation of fast Fourier transform algorithm, the method of generating all possible fast Fourier transform algorithms is presented in detail and is given in three sections. The first section discusses the Generation of SNOCRAFT and the second section illustrates how Operations on SNOCRAFT are made. These operations include inversion and rotation. The last section deals with the FFT Analysis. In this section, examples are provided to illustrate how one counts the number of multiplications and additions involved in performing the transform that one has developed.


Sign in / Sign up

Export Citation Format

Share Document