New Laue Micro-diffraction Setup for Real-Time In Situ Microstructural Characterization of Materials Under External Stress

Author(s):  
D. Popov ◽  
S. Sinogeikin ◽  
C. Park ◽  
E. Rod ◽  
J. Smith ◽  
...  
Gels ◽  
2018 ◽  
Vol 4 (4) ◽  
pp. 86 ◽  
Author(s):  
Brenda Molina ◽  
Eva Domínguez ◽  
Elaine Armelin ◽  
Carlos Alemán

In this work, we report the design and fabrication of a dual-function integrated system to monitor, in real time, the release of previously loaded 2-methyl-1,4-naphthoquinone (MeNQ), also named vitamin K3. The newly developed system consists of poly(3,4-ethylenedioxythiophene) (PEDOT) nanoparticles, which were embedded into a poly-γ-glutamic acid (γ-PGA) biohydrogel during the gelling reaction between the biopolymer chains and the cross-linker, cystamine. After this, agglomerates of PEDOT nanoparticles homogeneously dispersed inside the biohydrogel were used as polymerization nuclei for the in situ anodic synthesis of poly(hydroxymethyl-3,4-ethylenedioxythiophene) in aqueous solution. After characterization of the resulting flexible electrode composites, their ability to load and release MeNQ was proven and monitored. Specifically, loaded MeNQ molecules, which organized in shells around PEDOT nanoparticles agglomerates when the drug was simply added to the initial gelling solution, were progressively released to a physiological medium. The latter process was successfully monitored using an electrode composite through differential pulse voltammetry. The fabrication of electroactive flexible biohydrogels for real-time release monitoring opens new opportunities for theranostic therapeutic approaches.


2000 ◽  
Author(s):  
David R. Snelling ◽  
Gregory J. Smallwood ◽  
Robert A. Sawchuk ◽  
W. Stuart Neill ◽  
Daniel Gareau ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document