Ergodic Capacity and Throughput Analysis of Two-Way Wireless Energy Harvesting Network with Decode-and-Forward Relay

Author(s):  
Yingting Liu ◽  
Jianmei Shen ◽  
Hongwu Yang ◽  
Chunman Yan ◽  
Li Cong
2018 ◽  
Vol 2 (1) ◽  
pp. 18
Author(s):  
Miroslav Voznak ◽  
Hoang Quang Minh Tran ◽  
N. Tan Nguyen

In recent years, harvesting energy from radio frequency (RF) signals has drawn significant research interest as a promising solution to solve the energy problem. In this paper, we analyze the effect of the interference noise on the wireless energy harvesting performance of a decode-and-forward (DF) relaying network. In this analysis, the energy and information are transferred from the source to the relay nodes in the delay-limited transmission and Delay-tolerant transmission modes by two methods: i) time switching protocol and ii) power splitting protocol. Firstly, due to the constraint of the wireless energy harvesting at the relay node, the analytical mathematical expressions of the achievable throughput, outage probability and ergodic capacity of both schemes were proposed and demonstrated. After that, the effect of various system parameters on the system performance is rigorously studied with closed-form expressions for system throughput, outage probability, and ergodic capacity. Finally, the analytical results are also demonstrated by Monte-Carlo simulation. The results show that the analytical mathematical and simulated results agree with each other.  This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Phu Tran Tin ◽  
Phan Van-Duc ◽  
Tan N. Nguyen ◽  
Le Anh Vu

In this paper, we investigate the full-duplex (FD) decode-and-forward (DF) cooperative relaying system, whereas the relay node can harvest energy from radiofrequency (RF) signals of the source and then utilize the harvested energy to transfer the information to the destination. Specifically, a hybrid time-power switching-based relaying method is adopted, which leverages the benefits of time-switching relaying (TSR) and power-splitting relaying (PSR) protocols. While energy harvesting (EH) helps to reduce the limited energy at the relay, full-duplex is one of the most important techniques to enhance the spectrum efficiency by its capacity of transmitting and receiving signals simultaneously. Based on the proposed system model, the performance of the proposed relaying system in terms of the ergodic capacity (EC) is analyzed. Specifically, we derive the exact closed form for upper bound EC by applying some special function mathematics. Then, the Monte Carlo simulations are performed to validate the mathematical analysis and numerical results.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Syed Tariq Shah ◽  
Daniel B. da Costa ◽  
Kae Won Choi ◽  
Min Young Chung

Wireless energy harvesting has emerged as an efficient solution to prolong the lifetime of wireless networks composed of energy-constrained nodes. In this paper, we consider a multipoint-to-multipoint relay network, where multiple source nodes communicate with their respective destination nodes via intermediate energy-constrained decode-and-forward (DF) relay. The performance of two different transmission modes, namely, delay tolerant and delay nontolerant, is studied. Based on power-splitting relaying protocol (PSR), optimal energy harvesting and distribution schemes for both transmission modes are provided. In addition, for more realistic and practical analysis, we consider a nonlinear energy conversion model for energy harvesting at the relay node. Our numerical results provide useful insights into different system parameters of a nonlinear energy harvesting-based multipair DF relay network.


Sign in / Sign up

Export Citation Format

Share Document