scholarly journals Comparison of Remote Sensing Estimation Methods for Winter Wheat Leaf Nitrogen Content

Author(s):  
Chunlan Zhang ◽  
Fuquan Tang ◽  
Heli Li ◽  
Guijun Yang ◽  
Haikuan Feng ◽  
...  
2012 ◽  
Vol 524-527 ◽  
pp. 2132-2138 ◽  
Author(s):  
Hui Fang Wang ◽  
Ji Hua Wang ◽  
Mei Chen Feng ◽  
Qian Wang ◽  
Wen Jiang Huang ◽  
...  

Quality of winter wheat from hyperspectral data would provide opportunities to manage grain harvest differently, and to maximize output by adjusting input in fields. In this study, two varieties winter wheat as the object, hyperspectral data were utilized to predict grain quality. Firstly, the leaf and stem nitrogen content at winter wheat anthesis stage was proved to be signification correctly with crude content and wet gluten. And the leaf relatedcoefficient more than stem at the anthesis. Then, spectral indices significantly correlated to plant nitrogen content at anthesis stage were potential indicators for grain qualities. The vegetation index, VI derived from the canopy spectral reflectance was signification correlated to the leaf nitrogen content at anthesis stage, and highly significantly correlated to the leaf nitrogen content. Based on above analysis, the predict grain quality model were build and the related coefficient were 0.86, 0.68, 0.84, 0.58 which were reached a very significant.The result demonstrated the model based on SIPI and RVI to predict different cultivars wheat grain quality were practical and feasible.


2018 ◽  
Vol 10 (12) ◽  
pp. 1940 ◽  
Author(s):  
Liang Liang ◽  
Liping Di ◽  
Ting Huang ◽  
Jiahui Wang ◽  
Li Lin ◽  
...  

Novel hyperspectral indices, which are the first derivative normalized difference nitrogen index (FD-NDNI) and the first derivative ratio nitrogen vegetation index (FD-SRNI), were developed to estimate the leaf nitrogen content (LNC) of wheat. The field stress experiments were conducted with different nitrogen and water application rates across the growing season of wheat and 190 measurements were collected on canopy spectra and LNC under various treatments. The inversion models were constructed based on the dataset to evaluate the ability of various spectral indices to estimate LNC. A comparative analysis showed that the model accuracies of FD-NDNI and FD-SRNI were higher than those of other commonly used hyperspectral indices including mNDVI705, mSR, and NDVI705, which was indicated by higher R2 and lower root mean square error (RMSE) values. The least squares support vector regression (LS-SVR) and random forest regression (RFR) algorithms were then used to optimize the models constructed by FD-NDNI and FD-SRNI. The p-R2 values of the FD-NDNI_RFR and FD-SRNI_RFR models reached 0.874 and 0.872, respectively, which were higher than those of the exponential and SVR model and indicated that the RFR model was accurate. Using the RFR inversion model, remote sensing mapping for the Operative Modular Imaging Spectrometer (OMIS) image was accomplished. The remote sensing mapping of the OMIS image yielded an accuracy of R2 = 0.721 and RMSE = 0.540 for FD-NDNI and R2 = 0.720 and RMSE = 0.495 for FD-SRNI, which indicates that the similarity between the inversion value and the measured value was high. The results show that the new hyperspectral indices, i.e., FD-NDNI and FD-SRNI, are the optimal hyperspectral indices for estimating LNC and that the RFR algorithm is the preferred modeling method.


2021 ◽  
Vol 190 ◽  
pp. 106434
Author(s):  
Huaimin Li ◽  
Jingchao Zhang ◽  
Ke Xu ◽  
Xiaoping Jiang ◽  
Yan Zhu ◽  
...  

2021 ◽  
Vol 42 (12) ◽  
pp. 4676-4696
Author(s):  
Tiansheng Li ◽  
Zhen Zhu ◽  
Jing Cui ◽  
Jianhua Chen ◽  
Xiaoyan Shi ◽  
...  

2021 ◽  
Vol 13 (4) ◽  
pp. 739
Author(s):  
Jiale Jiang ◽  
Jie Zhu ◽  
Xue Wang ◽  
Tao Cheng ◽  
Yongchao Tian ◽  
...  

Real-time and accurate monitoring of nitrogen content in crops is crucial for precision agriculture. Proximal sensing is the most common technique for monitoring crop traits, but it is often influenced by soil background and shadow effects. However, few studies have investigated the classification of different components of crop canopy, and the performance of spectral and textural indices from different components on estimating leaf nitrogen content (LNC) of wheat remains unexplored. This study aims to investigate a new feature extracted from near-ground hyperspectral imaging data to estimate precisely the LNC of wheat. In field experiments conducted over two years, we collected hyperspectral images at different rates of nitrogen and planting densities for several varieties of wheat throughout the growing season. We used traditional methods of classification (one unsupervised and one supervised method), spectral analysis (SA), textural analysis (TA), and integrated spectral and textural analysis (S-TA) to classify the images obtained as those of soil, panicles, sunlit leaves (SL), and shadowed leaves (SHL). The results show that the S-TA can provide a reasonable compromise between accuracy and efficiency (overall accuracy = 97.8%, Kappa coefficient = 0.971, and run time = 14 min), so the comparative results from S-TA were used to generate four target objects: the whole image (WI), all leaves (AL), SL, and SHL. Then, those objects were used to determine the relationships between the LNC and three types of indices: spectral indices (SIs), textural indices (TIs), and spectral and textural indices (STIs). All AL-derived indices achieved more stable relationships with the LNC than the WI-, SL-, and SHL-derived indices, and the AL-derived STI was the best index for estimating the LNC in terms of both calibration (Rc2 = 0.78, relative root mean-squared error (RRMSEc) = 13.5%) and validation (Rv2 = 0.83, RRMSEv = 10.9%). It suggests that extracting the spectral and textural features of all leaves from near-ground hyperspectral images can precisely estimate the LNC of wheat throughout the growing season. The workflow is promising for the LNC estimation of other crops and could be helpful for precision agriculture.


Sign in / Sign up

Export Citation Format

Share Document