Multivariate Time Series Early Classification with Interpretability Using Deep Learning and Attention Mechanism

Author(s):  
En-Yu Hsu ◽  
Chien-Liang Liu ◽  
Vincent S. Tseng
Author(s):  
Hossein Ebrahimidinaki ◽  
Shervin Shirmohammadi ◽  
Emil Janulewicz ◽  
David Cote

2021 ◽  
Vol 13 (3) ◽  
pp. 67
Author(s):  
Eric Hitimana ◽  
Gaurav Bajpai ◽  
Richard Musabe ◽  
Louis Sibomana ◽  
Jayavel Kayalvizhi

Many countries worldwide face challenges in controlling building incidence prevention measures for fire disasters. The most critical issues are the localization, identification, detection of the room occupant. Internet of Things (IoT) along with machine learning proved the increase of the smartness of the building by providing real-time data acquisition using sensors and actuators for prediction mechanisms. This paper proposes the implementation of an IoT framework to capture indoor environmental parameters for occupancy multivariate time-series data. The application of the Long Short Term Memory (LSTM) Deep Learning algorithm is used to infer the knowledge of the presence of human beings. An experiment is conducted in an office room using multivariate time-series as predictors in the regression forecasting problem. The results obtained demonstrate that with the developed system it is possible to obtain, process, and store environmental information. The information collected was applied to the LSTM algorithm and compared with other machine learning algorithms. The compared algorithms are Support Vector Machine, Naïve Bayes Network, and Multilayer Perceptron Feed-Forward Network. The outcomes based on the parametric calibrations demonstrate that LSTM performs better in the context of the proposed application.


2020 ◽  
Vol 34 (01) ◽  
pp. 930-937
Author(s):  
Qingxiong Tan ◽  
Mang Ye ◽  
Baoyao Yang ◽  
Siqi Liu ◽  
Andy Jinhua Ma ◽  
...  

Due to the discrepancy of diseases and symptoms, patients usually visit hospitals irregularly and different physiological variables are examined at each visit, producing large amounts of irregular multivariate time series (IMTS) data with missing values and varying intervals. Existing methods process IMTS into regular data so that standard machine learning models can be employed. However, time intervals are usually determined by the status of patients, while missing values are caused by changes in symptoms. Therefore, we propose a novel end-to-end Dual-Attention Time-Aware Gated Recurrent Unit (DATA-GRU) for IMTS to predict the mortality risk of patients. In particular, DATA-GRU is able to: 1) preserve the informative varying intervals by introducing a time-aware structure to directly adjust the influence of the previous status in coordination with the elapsed time, and 2) tackle missing values by proposing a novel dual-attention structure to jointly consider data-quality and medical-knowledge. A novel unreliability-aware attention mechanism is designed to handle the diversity in the reliability of different data, while a new symptom-aware attention mechanism is proposed to extract medical reasons from original clinical records. Extensive experimental results on two real-world datasets demonstrate that DATA-GRU can significantly outperform state-of-the-art methods and provide meaningful clinical interpretation.


2015 ◽  
Vol 149 ◽  
pp. 777-787 ◽  
Author(s):  
Guoliang He ◽  
Yong Duan ◽  
Rong Peng ◽  
Xiaoyuan Jing ◽  
Tieyun Qian ◽  
...  

Author(s):  
Qingyi Pan ◽  
Wenbo Hu ◽  
Ning Chen

It is important yet challenging to perform accurate and interpretable time series forecasting. Though deep learning methods can boost forecasting accuracy, they often sacrifice interpretability. In this paper, we present a new scheme of series saliency to boost both accuracy and interpretability. By extracting series images from sliding windows of the time series, we design series saliency as a mixup strategy with a learnable mask between the series images and their perturbed versions. Series saliency is model agnostic and performs as an adaptive data augmentation method for training deep models. Moreover, by slightly changing the objective, we optimize series saliency to find a mask for interpretable forecasting in both feature and time dimensions. Experimental results on several real datasets demonstrate that series saliency is effective to produce accurate time-series forecasting results as well as generate temporal interpretations.


GigaScience ◽  
2019 ◽  
Vol 8 (11) ◽  
Author(s):  
Johann de Jong ◽  
Mohammad Asif Emon ◽  
Ping Wu ◽  
Reagon Karki ◽  
Meemansa Sood ◽  
...  

Abstract Background Precision medicine requires a stratification of patients by disease presentation that is sufficiently informative to allow for selecting treatments on a per-patient basis. For many diseases, such as neurological disorders, this stratification problem translates into a complex problem of clustering multivariate and relatively short time series because (i) these diseases are multifactorial and not well described by single clinical outcome variables and (ii) disease progression needs to be monitored over time. Additionally, clinical data often additionally are hindered by the presence of many missing values, further complicating any clustering attempts. Findings The problem of clustering multivariate short time series with many missing values is generally not well addressed in the literature. In this work, we propose a deep learning–based method to address this issue, variational deep embedding with recurrence (VaDER). VaDER relies on a Gaussian mixture variational autoencoder framework, which is further extended to (i) model multivariate time series and (ii) directly deal with missing values. We validated VaDER by accurately recovering clusters from simulated and benchmark data with known ground truth clustering, while varying the degree of missingness. We then used VaDER to successfully stratify patients with Alzheimer disease and patients with Parkinson disease into subgroups characterized by clinically divergent disease progression profiles. Additional analyses demonstrated that these clinical differences reflected known underlying aspects of Alzheimer disease and Parkinson disease. Conclusions We believe our results show that VaDER can be of great value for future efforts in patient stratification, and multivariate time-series clustering in general.


Sign in / Sign up

Export Citation Format

Share Document