Highway End-of-Queue Alerting System Based on Probe Vehicle Data

Author(s):  
Keyu Ruan ◽  
Zahra Yarmand ◽  
Renran Tian ◽  
Lingxi Li ◽  
Yaobin Chen ◽  
...  
2021 ◽  
Vol 52 ◽  
pp. 621-628
Author(s):  
Albert Garriga ◽  
MªPaz Linares ◽  
Josep Casanovas
Keyword(s):  

Author(s):  
Elise Henry ◽  
Angelo Furno ◽  
Nour-Eddin El Faouzi

Transport networks are essential for societies. Their proper operation has to be preserved to face any perturbation or disruption. It is therefore of paramount importance that the modeling and quantification of the resilience of such networks are addressed to ensure an acceptable level of service even in the presence of disruptions. The paper aims at characterizing network resilience through weighted degree centrality. To do so, a real dataset issued from probe vehicle data is used to weight the graph by the traffic load. In particular, a set of disrupted situations retrieved from the study dataset is analyzed to quantify the impact on network operations. Results demonstrate the ability of the proposed metrics to capture traffic dynamics as well as their utility for quantifying the resilience of the network. The proposed methodology combines different metrics from the complex networks theory (i.e., heterogeneity, density, and symmetry) computed on temporal and weighted graphs. Time-varying traffic conditions and disruptions are analyzed by providing relevant insights on the network states via three-dimensional maps.


Author(s):  
Markus Steinmaßl ◽  
Stefan Kranzinger ◽  
Karl Rehrl

Travel time reliability (TTR) indices have gained considerable attention for evaluating the quality of traffic infrastructure. Whereas TTR measures have been widely explored using data from stationary sensors with high penetration rates, there is a lack of research on calculating TTR from mobile sensors such as probe vehicle data (PVD) which is characterized by low penetration rates. PVD is a relevant data source for analyzing non-highway routes, as they are often not sufficiently covered by stationary sensors. The paper presents a methodology for analyzing TTR on (sub-)urban and rural routes with sparse PVD as the only data source that could be used by road authorities or traffic planners. Especially in the case of sparse data, spatial and temporal aggregations could have great impact, which are investigated on two levels: first, the width of time of day (TOD) intervals and second, the length of road segments. The spatial and temporal aggregation effects on travel time index (TTI) as prominent TTR measure are analyzed within an exemplary case study including three different routes. TTI patterns are calculated from data of one year grouped by different days-of-week (DOW) groups and the TOD. The case study shows that using well-chosen temporal and spatial aggregations, even with sparse PVD, an in-depth analysis of traffic patterns is possible.


2021 ◽  
Vol 147 (5) ◽  
pp. 04021024
Author(s):  
Liwei Wang ◽  
Xuedong Yan ◽  
Yang Liu ◽  
Xiaobing Liu ◽  
Deqi Chen

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Mahmuda Akhtar ◽  
Sara Moridpour

In recent years, traffic congestion prediction has led to a growing research area, especially of machine learning of artificial intelligence (AI). With the introduction of big data by stationary sensors or probe vehicle data and the development of new AI models in the last few decades, this research area has expanded extensively. Traffic congestion prediction, especially short-term traffic congestion prediction is made by evaluating different traffic parameters. Most of the researches focus on historical data in forecasting traffic congestion. However, a few articles made real-time traffic congestion prediction. This paper systematically summarises the existing research conducted by applying the various methodologies of AI, notably different machine learning models. The paper accumulates the models under respective branches of AI, and the strength and weaknesses of the models are summarised.


Author(s):  
Tony Z. Qiu ◽  
Xiao-Yun Lu ◽  
Andy H. F. Chow ◽  
Steven E. Shladover

Author(s):  
Stefan Kranzinger ◽  
Markus Steinmaßl

Aggregation of sparse probe vehicle data (PVD) is a crucial issue in travel time reliability (TTR) analysis. This study, therefore, examines the effect of temporal and spatial aggregation of sparse PVD on the results of a linear regression analysis where two different measures of TTR are analyzed as the dependent variable. Our results show that by aggregating the data to longer time intervals and coarser spatial units the linear model can explain a higher proportion of the variance in TTR. Furthermore, we find that the effects of road design characteristics in particular depend on the variable used to represent TTR. We conclude that the temporal and spatial aggregation of sparse PVD affects the results of linear regression explaining TTR.


Sign in / Sign up

Export Citation Format

Share Document