scholarly journals Preservation of Piecewise Constancy under TV Regularization with Rectilinear Anisotropy

Author(s):  
Clemens Kirisits ◽  
Otmar Scherzer ◽  
Eric Setterqvist
2021 ◽  
Vol 13 (13) ◽  
pp. 2514
Author(s):  
Qianwei Dai ◽  
Hao Zhang ◽  
Bin Zhang

The chaos oscillation particle swarm optimization (COPSO) algorithm is prone to binge trapped in the local optima when dealing with certain complex models in ground-penetrating radar (GPR) data inversion, because it inherently suffers from premature convergence, high computational costs, and extremely slow convergence times, especially in the middle and later periods of iterative inversion. Considering that the bilateral connections between different particle positions can improve both the algorithmic searching efficiency and the convergence performance, we first develop a fast single-trace-based approach to construct an initial model for 2-D PSO inversion and then propose a TV-regularization-based improved PSO (TVIPSO) algorithm that employs total variation (TV) regularization as a constraint technique to adaptively update the positions of particles. B by adding the new velocity variations and optimal step size matrices, the search range of the random particles in the solution space can be significantly reduced, meaning blindness in the search process can be avoided. By introducing constraint-oriented regularization to allow the optimization search to move out of the inaccurate region, the premature convergence and blurring problems can be mitigated to further guarantee the inversion accuracy and efficiency. We report on three inversion experiments involving multilayered, fluctuated terrain models and a typical complicated inner-interface model to demonstrate the performance of the proposed algorithm. The results of the fluctuated terrain model show that compared with the COPSO algorithm, the fitness error (MAE) of the TVIPSO algorithm is reduced from 2.3715 to 1.0921, while for the complicated inner-interface model the fitness error (MARE) of the TVIPSO algorithm is reduced from 1.9539 to 1.5674.


2016 ◽  
Vol 38 (1) ◽  
pp. A614-A630 ◽  
Author(s):  
Martin Storath ◽  
Andreas Weinmann ◽  
Michael Unser

2021 ◽  
Vol 348 ◽  
pp. 01011
Author(s):  
Aicha Allag ◽  
Redouane Drai ◽  
Tarek Boutkedjirt ◽  
Abdessalam Benammar ◽  
Wahiba Djerir

Computed tomography (CT) aims to reconstruct an internal distribution of an object based on projection measurements. In the case of a limited number of projections, the reconstruction problem becomes significantly ill-posed. Practically, reconstruction algorithms play a crucial role in overcoming this problem. In the case of missing or incomplete data, and in order to improve the quality of the reconstruction image, the choice of a sparse regularisation by adding l1 norm is needed. The reconstruction problem is then based on using proximal operators. We are interested in the Douglas-Rachford method and employ total variation (TV) regularization. An efficient technique based on these concepts is proposed in this study. The primary goal is to achieve high-quality reconstructed images in terms of PSNR parameter and relative error. The numerical simulation results demonstrate that the suggested technique minimizes noise and artifacts while preserving structural information. The results are encouraging and indicate the effectiveness of the proposed strategy.


2021 ◽  
Vol 15 ◽  
pp. 43-47
Author(s):  
Ahmad Shahin ◽  
Walid Moudani ◽  
Fadi Chakik

In this paper we present a hybrid model for image compression based on segmentation and total variation regularization. The main motivation behind our approach is to offer decode image with immediate access to objects/features of interest. We are targeting high quality decoded image in order to be useful on smart devices, for analysis purpose, as well as for multimedia content-based description standards. The image is approximated as a set of uniform regions: The technique will assign well-defined members to homogenous regions in order to achieve image segmentation. The Adaptive fuzzy c-means (AFcM) is a guide to cluster image data. A second stage coding is applied using entropy coding to remove the whole image entropy redundancy. In the decompression phase, the reverse process is applied in which the decoded image suffers from missing details due to the coarse segmentation. For this reason, we suggest the application of total variation (TV) regularization, such as the Rudin-Osher-Fatemi (ROF) model, to enhance the quality of the coded image. Our experimental results had shown that ROF may increase the PSNR and hence offer better quality for a set of benchmark grayscale images.


Author(s):  
Zhongqiu Xu ◽  
Mingqian Liu ◽  
Guoru Zhou ◽  
Zhonghao Wei ◽  
Bingchen Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document