Predatory Mites for Biological Control of Phytophagous Mites

Author(s):  
Paulo Rebelles Reis
Author(s):  
Mércia Elias Duarte ◽  
Peterson Rodrigo Demite ◽  
Renata Santos De Mendonça ◽  
Miguel Michereff-filho ◽  
Maria Luiza Santa Cruz De Mesquita Alves ◽  
...  

Predatory mites represent important biological control agents and those belonging to the Phytoseiidae family are the most promising for the control of phytophagous mites and small insects. The control of key pests of tomato and other solanaceous crops, highlighting phytophagous mites, has been a challenge and the biological control constitutes a promising strategy. Prospecting predatory mites in wild host plants, natural environments as well as in agroecosystems is relevant because these non-crop and crop areas can serve as reservoirs for promising species for biological control programs. This study aimed to know the Phytoseiidae fauna associated with wild and cultivated solanaceous plants in a poorly prospected area in Brazil, the Central-West Region. A detailed taxonomic identification of phytoseiid mites was conducted, and the most important morphological traits are presented for each species. In addition, associated phytophagous mites mainly belonging to the Tetranychidae, Tenuipalpidae and Eriophyoidea were identified. Surveys were carried out in 23 species of solanaceous collected in the Distrito Federal (12 areas) and Goiás State (1 area), from February 2017 to January 2018. Nineteen species of predators belonging to ten genera were recorded: Amblyseius (2 species), Euseius (3), Galendromus (1), Iphiseiodes (1), Neoseiulus (3), Paraphytoseius (1), Phytoseius (3), Proprioseiopsis (2), Typhlodromalus (2, one probably new to science) and Typhlodromips (1). Solanum lycocarpum was the solanaceous that harbored the highest richness (11 species), as well as the one with the highest abundance of phytoseiids (250 specimens). Typhlodromalus aripo was the most common species, being the most abundant (423 specimens; 32%) and registered on the largest number of hosts (14). Many of phytoseiid species found present morphological traits that facilitate their occurrence in leaves with trichomes, as in the case of tomato and other cultivated solanaceous. These traits and the association between predators and phytophagous mites may indicate that these species are promising for biological control programms. Thus, extensive studies to assess the efficiency of the identified predatory mites to control key solanaceous pests are required.


Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 180
Author(s):  
Stefan Möth ◽  
Andreas Walzer ◽  
Markus Redl ◽  
Božana Petrović ◽  
Christoph Hoffmann ◽  
...  

Viticultural practices and landscape composition are the main drivers influencing biological pest control in vineyards. Predatory mites, mainly phytoseiid (Phytoseiidae) and tydeoid mites (Tydeidae), are important to control phytophagous mites (Tetranychidae and Eriophyidae) on vines. In the absence of arthropod prey, pollen is an important food source for predatory mites. In 32 paired vineyards located in Burgenland/Austria, we examined the effect of landscape composition, management type (organic/integrated), pesticide use, and cover crop diversity of the inter-row on the densities of phytoseiid, tydeoid, and phytophagous mites. In addition, we sampled pollen on vine leaves. Typhlodromus pyri Scheuten was the main phytoseiid mite species and Tydeus goetzi Schruft the main tydeoid species. Interestingly, the area-related acute pesticide toxicity loading was higher in organic than in integrated vineyards. The densities of phytoseiid and tydeoid mites was higher in integrated vineyards and in vineyards with spontaneous vegetation. Their population also profited from an increased viticultural area at the landscape scale. Eriophyoid mite densities were extremely low across all vineyards and spider mites were absent. Biological pest control of phytophagous mites benefits from less intensive pesticide use and spontaneous vegetation cover in vineyard inter-rows, which should be considered in agri-environmental schemes.


Author(s):  
Fernando Teruhiko Hata ◽  
Pedro Henrique Togni ◽  
Maurício Ursi Ventura ◽  
José Eduardo Poloni da Silva ◽  
Nilson Zacarias Ferreira ◽  
...  

Abstract Non-crop plant diversity plays a fundamental role in the conservation of predatory mite (PM) and can be proposed as a banker plant system (BPS). BPSs provide plants that host natural enemies in greenhouses or field crops and may improve the efficiency of biological control. The aim of this study was to investigate if a diverse plant composition could be a suitable BPS for PMs in strawberry crops. A plant inventory characterized 22 species of non-crop plants harboring PMs. The most abundant PMs, in decreasing order, were Neoseiulus californicus, Neoseiulus anonymus, Euseius citrifolius, and Euseius concordis. PMs were randomly distributed among plants. We also found specific associations of Phytoseiidae species and phytophagous or generalist mites on plants. Due to this, four species were deemed suitable as banker plants: Capsicum sp., Leonurus sibiricus, Solanum americanum, and Urochloa mutica. Moreover, these plants combined a high PMs density and a low occurrence or absence of pest-mites. This study suggests shifting the traditional view that BPSs are composed of a limited number of species to use plant assemblages. This contributes to both conservation and augmentative biological control.


2019 ◽  
Vol 132 ◽  
pp. 128-134 ◽  
Author(s):  
L.H. Azevedo ◽  
L.G. Leite ◽  
J.G. Chacon-Orozco ◽  
M.F.P. Moreira ◽  
M.P. Ferreira ◽  
...  

BioControl ◽  
2016 ◽  
Vol 61 (6) ◽  
pp. 681-689 ◽  
Author(s):  
Fernando R. da Silva ◽  
Gilberto J. de Moraes ◽  
Izabela Lesna ◽  
Yukie Sato ◽  
Carlos Vasquez ◽  
...  

2020 ◽  
Vol 175 ◽  
pp. 09004 ◽  
Author(s):  
Marina Volkova ◽  
Elena Matveikina ◽  
Jakov Volkov ◽  
Elena Stranisheshevskaya

The current status of the global organic viticulture is discussed. The challenge of conservation of species and landscape biodiversity in the Crimea is actualized. The fauna of mites and other insects in the grape agrocenosis of the South Coast of the Peninsula is reported. Biodiversity of mites and other insects in commercial vineyards at different pesticide loads is shown. The role that wild-growing vegetation in territories adjacent to vineyards plays in the agrolandscape of grape agrocenoses is highlighted. The commonness of species diversity of predatory mites in a vineyard and on its outskirts is revealed. The possibility to rely on natural mechanisms for self-regulation of population numbers of phytophagous mites under conditions of organic viticulture is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document