Diverse non-crop vegetation assemblages as banker plants for predatory mites in strawberry crop

Author(s):  
Fernando Teruhiko Hata ◽  
Pedro Henrique Togni ◽  
Maurício Ursi Ventura ◽  
José Eduardo Poloni da Silva ◽  
Nilson Zacarias Ferreira ◽  
...  

Abstract Non-crop plant diversity plays a fundamental role in the conservation of predatory mite (PM) and can be proposed as a banker plant system (BPS). BPSs provide plants that host natural enemies in greenhouses or field crops and may improve the efficiency of biological control. The aim of this study was to investigate if a diverse plant composition could be a suitable BPS for PMs in strawberry crops. A plant inventory characterized 22 species of non-crop plants harboring PMs. The most abundant PMs, in decreasing order, were Neoseiulus californicus, Neoseiulus anonymus, Euseius citrifolius, and Euseius concordis. PMs were randomly distributed among plants. We also found specific associations of Phytoseiidae species and phytophagous or generalist mites on plants. Due to this, four species were deemed suitable as banker plants: Capsicum sp., Leonurus sibiricus, Solanum americanum, and Urochloa mutica. Moreover, these plants combined a high PMs density and a low occurrence or absence of pest-mites. This study suggests shifting the traditional view that BPSs are composed of a limited number of species to use plant assemblages. This contributes to both conservation and augmentative biological control.

2000 ◽  
Vol 18 (4) ◽  
pp. 211-217 ◽  
Author(s):  
P.D. Pratt ◽  
B.A. Croft

Abstract Spider mites (Tetranychidae) are among the most injurious pests of commercial landscape plant nurseries. The introduction of predaceous mites (Phytoseiidae) into nursery crops for control of spider mites can be an effective alternative to pesticides. We sought to evaluate the use of banker plants as a method of rearing and dispersing predatory mites for the control of spider mites in landscape nursery systems. Banker plants include any plant addition that aids in development and dispersal of predators for control of herbivorous pests. Addition of the predatory mite Neoseiulus fallacis (Garman) into spider mite infested arborvitae and rhododendron banker plants held in replicated greenhouse cubicles resulted in more predatory mites dispersing to spider mite infested plants downwind than were originally inoculated. To improve persistence and subsequent dispersal of predatory mites in an arborvitae banker plant, we evaluated the use of adding supplemental prey (spider mites) and applying a portion of the plant foliage with a pyrethroid to provide a refuge for the prey. Reintroduction of prey increased the dispersal duration of N. fallacis but the pyrethroid-based refuge did not. Predatory mites dispersing from arborvitae banker plants of approximately 1.25 m (4.1 ft) tall were collected from receiver plants at 10, 20 and 30 m (10.9, 21.9 and 32.8 yd) down wind. Integration of a banker plant system into a landscape nursery operation is discussed.


2021 ◽  
Vol 3 ◽  
pp. ec03037
Author(s):  
Sofía Jiménez Jorge ◽  
Peterson R. Demite ◽  
Gilberto J. de Moraes

Phytoseiidae (Acari: Mesostigmata) is an important family of predatory mites, with some species being commercialized as biological control agents for the control of phytophagous mites and small insects. In Peru, 65 species of this family have been recorded so far, with Amblyseius being the most diverse genus, with 11 species. The aim of this study is to report for the first time the presence of Amblyseius tamatavensis Blommers, 1974 in Peru. In South America, this species has so far been reported only in Brazil and Venezuela. In Peru, A. tamatavensis was found on orange plants [Citrus sinensis (L.) Osbeck] in the district of Pangoa, department of Júnin. In the laboratory, collected specimens were observed to feed on Phyllocoptruta oleivora (Ashmed, 1879) (Acari: Eriophyidae) and Frankliniella occidentalis (Pergande, 1895) (Thysanoptera: Thripidae). Studies to verify the potential of this species as a biological control agent for pests occurring in Peru should be conducted. A key to the Amblyseius species recorded in Peru is presented.


2004 ◽  
Author(s):  
Kevin Heinz ◽  
Itamar Glazer ◽  
Moshe Coll ◽  
Amanda Chau ◽  
Andrew Chow

The western flower thrips (WFT), Frankliniella occidentalis (Pergande), is a serious widespread pest of vegetable and ornamental crops worldwide. Chemical control for Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) on floriculture or vegetable crops can be difficult because this pest has developed resistance to many insecticides and also tends to hide within flowers, buds, and apical meristems. Predatory bugs, predatory mites, and entomopathogenic nematodes are commercially available in both the US and Israel for control of WFT. Predatory bugs, such as Orius species, can suppress high WFT densities but have limited ability to attack thrips within confined plant parts. Predatory mites can reach more confined habitats than predatory bugs, but kill primarily first-instar larvae of thrips. Entomopathogenic nematodes can directly kill or sterilize most thrips stages, but have limited mobility and are vulnerable to desiccation in certain parts of the crop canopy. However, simultaneous use of two or more agents may provide both effective and cost efficient control of WFT through complimentary predation and/or parasitism. The general goal of our project was to evaluate whether suppression of WFT could be enhanced by inundative or inoculative releases of Orius predators with either predatory mites or entomopathogenic nematodes. Whether pest suppression is best when single or multiple biological control agents are used, is an issue of importance to the practice of biological control. For our investigations in Texas, we used Orius insidiosus(Say), the predatory mite, Amblyseius degeneransBerlese, and the predatory mite, Amblyseius swirskii(Athias-Henriot). In Israel, the research focused on Orius laevigatus (Fieber) and the entomopathogenic nematode, Steinernema felpiae. Our specific objectives were to: (1) quantify the spatial distribution and population growth of WFT and WFT natural enemies on greenhouse roses (Texas) and peppers (Israel), (2) assess interspecific interactions among WFT natural enemies, (3) measure WFT population suppression resulting from single or multiple species releases. Revisions to our project after the first year were: (1) use of A. swirskiiin place of A. degeneransfor the majority of our predatory mite and Orius studies, (2) use of S. felpiaein place of Thripinema nicklewoodi for all of the nematode and Orius studies. We utilized laboratory experiments, greenhouse studies, field trials and mathematical modeling to achieve our objectives. In greenhouse trials, we found that concurrent releases of A.degeneranswith O. insidiosusdid not improve control of F. occidentalis on cut roses over releases of only O. insidiosus. Suppression of WFT by augmentative releases A. swirskiialone was superior to augmentative releases of O. insidiosusalone and similar to concurrent releases of both predator species on cut roses. In laboratory studies, we discovered that O. insidiosusis a generalist predator that ‘switches’ to the most abundant prey and will kill significant numbers of A. swirskiior A. degeneransif WFTbecome relatively less abundant. Our findings indicate that intraguild interactions between Orius and Amblyseius species could hinder suppression of thrips populations and combinations of these natural enemies may not enhance biological control on certain crops. Intraguild interactions between S. felpiaeand O. laevigatus were found to be more complex than those between O. insidiosusand predatory mites. In laboratory studies, we found that S. felpiaecould infect and kill either adult or immature O. laevigatus. Although adult O. laevigatus tended to avoid areas infested by S. felpiaein Petri dish arenas, they did not show preference between healthy WFT and WFT infected with S. felpiaein choice tests. In field cage trials, suppression of WFT on sweet-pepper was similar in treatments with only O. laevigatus or both O. laevigatus and S. felpiae. Distribution and numbers of O. laevigatus on pepper plants also did not differ between cages with or without S. felpiae. Low survivorship of S. felpiaeafter foliar applications to sweet-pepper may explain, in part, the absence of effects in the field trials. Finally, we were interested in how differential predation on different developmental stages of WFT (Orius feeding on WFT nymphs inhabiting foliage and flowers, nematodes that attack prepupae and pupae in the soil) affects community dynamics. To better understand these interactions, we constructed a model based on Lotka-Volterra predator-prey theory and our simulations showed that differential predation, where predators tend to concentrate on one WFT stage contribute to system stability and permanence while predators that tend to mix different WFT stages reduce system stability and permanence. 


HortScience ◽  
2006 ◽  
Vol 41 (3) ◽  
pp. 691-694 ◽  
Author(s):  
George P. Opit ◽  
Greg K. Fitch ◽  
David C. Margolies ◽  
James R. Nechols ◽  
Kimberly A. Williams

The effects of overhead and drip tube irrigation on twospotted spider mite (TSMs) (Tetranychus urticae Koch) and predatory mite (PMs) (Phytoseiulus persimilis Athias-Henriot) populations, as well as the biological control of TSMs by PMs, were investigated on Impatiens wallerana Hook. f. `Impulse Orange'. To determine the effects of the two irrigation methods on TSM populations, plants were inoculated with female TSMs 6 weeks after seeding. Plants were then irrigated twice every three days, and TSM counts were taken 3 weeks later. To assess the effects of irrigation method on PMs, plants were inoculated with TSMs 6 weeks after seeding, PMs were released 10 days later, plants were irrigated about once per day, and the number of predatory mites on plants was counted 3 weeks after release. To assess the effects of irrigation method on the biological control of TSMs by PMs, plants were inoculated with TSMs and PMs were released as before, but then plants were irrigated either three times every 2 days or three times every 4 days using either drip or overhead irrigation. The number of TSMs on plants and the number of leaves showing TSM feeding injury were measured 3 weeks after predator release. Overhead watering significantly reduced TSM and PM populations as much as 68- and 1538-fold, respectively, compared to drip irrigation with microtubes. Perhaps more important, overhead watering with or without predators significantly reduced the number of leaves sustaining TSM feeding injury as much as 4-fold compared to drip irrigation. These results confirm the common observation that TSM infestations and injury may be reduced by irrigation systems that wet plant foliage. However, predators still reduced TSMs even though overhead irrigation had a suppressive effect on predatory mites. Predators are particularly useful for reducing TSM injury when plants are watered infrequently. Overhead watering could be used in tandem with biological control as a component of an integrated crop management program for TSMs in ornamental greenhouses by rapidly lowering TSM population levels in hot spots before PMs are released.


2015 ◽  
Vol 68 ◽  
pp. 446-446
Author(s):  
D.J. Wilson ◽  
P.J. Gerard

Spiny snout mite (Neomolgus capillatus) is a potential biocontrol agent for clover flea (Sminthurus viridis) a white clover pest on dairy farms in warmer and wetter parts of New Zealand In the 1990s this mite was introduced from Brittany France into Tasmania for clover flea control Results during the release programme were highly promising and subsequent anecdotal farmer reports indicate widespread decreases in damage As N capillatus is a predatory mite and already known to attack nontarget organisms habitat specificity will determine whether it could be introduced into New Zealand without risk to native insects To assess this pastures on nine of the original Tasmanian release farms and adjacent nontarget habitats ranging from bush wetlands eucalypt stands to sand dune country were sampled in April 2014 Litter samples were collected heat extracted and mite species identified Neomolgus capillatus was found at effective densities in pastures that had good clover cover Where present it displaced Bdellodes spp mites that are ineffective against clover flea No N capillatus were found in the nontarget habitats all of which lacked clover and contained other predatory mites including Bdellodes spp Therefore the preference by N capillatus for lush pastures makes it an excellent prospect for introduction as a biocontrol agent into clover flea prone regions of New Zealand


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Inga C. Christiansen ◽  
Sandra Szin ◽  
Peter Schausberger

Abstract Learning is changed behavior following experience, and ubiquitous in animals including plant-inhabiting predatory mites (Phytoseiidae). Learning has many benefits but also incurs costs, which are only poorly understood. Here, we addressed learning, especially its costs, in the generalist predatory mite Amblyseius swirskii, a biocontrol agent of several herbivores, which can also survive on pollen. The goals of our research were (1) to scrutinize if A. swirskii is able to learn during early life in foraging contexts and, if so, (2) to determine the costs of early learning. In the experiments, we used one difficult-to-grasp prey, i.e., thrips, and one easy-to-grasp prey, i.e., spider mites. Our experiments show that A. swirskii is able to learn during early life. Adult predators attacked prey experienced early in life (i.e., matching prey) more quickly than they attacked unknown (i.e., non-matching) prey. Furthermore, we observed both fitness benefits and operating (physiological) costs of early learning. Predators receiving the matching prey produced the most eggs, whereas predators receiving the non-matching prey produced the least. Thrips-experienced predators needed the longest for juvenile development. Our findings may be used to enhance A. swirskii’s efficacy in biological control, by priming young predators on a specific prey early in life.


2017 ◽  
Vol 77 (1) ◽  
pp. 162-169 ◽  
Author(s):  
G. C. Souza-Pimentel ◽  
P. R. Reis ◽  
C. R. Bonatto ◽  
J. P. Alves ◽  
M. F. Siqueira

Abstract Predatory mites that belong to the Phytoseiidae family are one of the main natural enemies of phytophagous mites, thus allowing for their use as a biological control. Phytoseiulus macropilis (Banks, 1904) (Acari: Phytoseiidae) is among the main species of predatory mites used for this purpose. Tetranychus urticae Koch, 1836 (Acari: Tetranychidae) is considered to be one of the most important species of mite pests and has been described as attacking over 1,100 species of plants in 140 families with economic value. The objective of the present study was to investigate, in the laboratory, the reproductive parameters of the predatory mite P. macropilis when fed T. urticae. Experiments were conducted under laboratory conditions at 25 ± 2 °C of temperature, 70 ± 10% RH and 14 hours of photophase. In addition, biological aspects were evaluated and a fertility life table was established. The results of these experiments demonstrated that the longevity of adult female was 27.5 days and adult male was 29.0 days. The population was estimated to increase approximately 27 times (Ro) in mean generation time (T), which was 17.7 days. Lastly, the mite population grew 1.2 times/day (λ) and doubled every 3.7 days (TD).


Author(s):  
Mércia Elias Duarte ◽  
Peterson Rodrigo Demite ◽  
Renata Santos De Mendonça ◽  
Miguel Michereff-filho ◽  
Maria Luiza Santa Cruz De Mesquita Alves ◽  
...  

Predatory mites represent important biological control agents and those belonging to the Phytoseiidae family are the most promising for the control of phytophagous mites and small insects. The control of key pests of tomato and other solanaceous crops, highlighting phytophagous mites, has been a challenge and the biological control constitutes a promising strategy. Prospecting predatory mites in wild host plants, natural environments as well as in agroecosystems is relevant because these non-crop and crop areas can serve as reservoirs for promising species for biological control programs. This study aimed to know the Phytoseiidae fauna associated with wild and cultivated solanaceous plants in a poorly prospected area in Brazil, the Central-West Region. A detailed taxonomic identification of phytoseiid mites was conducted, and the most important morphological traits are presented for each species. In addition, associated phytophagous mites mainly belonging to the Tetranychidae, Tenuipalpidae and Eriophyoidea were identified. Surveys were carried out in 23 species of solanaceous collected in the Distrito Federal (12 areas) and Goiás State (1 area), from February 2017 to January 2018. Nineteen species of predators belonging to ten genera were recorded: Amblyseius (2 species), Euseius (3), Galendromus (1), Iphiseiodes (1), Neoseiulus (3), Paraphytoseius (1), Phytoseius (3), Proprioseiopsis (2), Typhlodromalus (2, one probably new to science) and Typhlodromips (1). Solanum lycocarpum was the solanaceous that harbored the highest richness (11 species), as well as the one with the highest abundance of phytoseiids (250 specimens). Typhlodromalus aripo was the most common species, being the most abundant (423 specimens; 32%) and registered on the largest number of hosts (14). Many of phytoseiid species found present morphological traits that facilitate their occurrence in leaves with trichomes, as in the case of tomato and other cultivated solanaceous. These traits and the association between predators and phytophagous mites may indicate that these species are promising for biological control programms. Thus, extensive studies to assess the efficiency of the identified predatory mites to control key solanaceous pests are required.


Sign in / Sign up

Export Citation Format

Share Document