Experimentation of Negotiation Protocols for Consensus Problems in Smart Parking Systems

Author(s):  
Bruno Rafael Alves ◽  
Gleifer Vaz Alves ◽  
André Pinz Borges ◽  
Paulo Leitão
Author(s):  
Mohammed Rezwanul Islam ◽  
Sami Azam ◽  
Bharanidharan Shanmugam ◽  
Asif Karim ◽  
Jamal El-Den ◽  
...  

Author(s):  
Awad Alharbi ◽  
George Halikias ◽  
Mohammad Yamin ◽  
Adnan Ahmed Abi Sen

2021 ◽  
Vol 21 (3) ◽  
pp. 1-21
Author(s):  
Francesco Piccialli ◽  
Fabio Giampaolo ◽  
Edoardo Prezioso ◽  
Danilo Crisci ◽  
Salvatore Cuomo

Nowadays, a sustainable and smart city focuses on energy efficiency and the reduction of polluting emissions through smart mobility projects and initiatives to “sensitize” infrastructure. Smart parking is one of the building blocks of intelligent mobility, innovative mobility that aims to be flexible, integrated, and sustainable and consequently integrated into a Smart City. By using the Internet of Things (IoT) sensors located in the parking areas or the underground car parks in combination with a mobile application, which indicates to citizens the free places in the different areas of the city and guides them toward the chosen parking, it is possible to reduce air pollution and fluidifying noise traffic. In this article, we present and discuss an innovative Deep Learning-based ensemble technique in forecasting the parking space occupancy to reduce the search time for parking and to optimize the flow of cars in particularly congested areas, with an overall positive impact on traffic in urban centres. A genetic algorithm has also been used to optimize predictors parameters. The main goal is to design an intelligent IoT-based service that can predict, in the next few hours, the parking spaces occupancy of a street. The proposed approach has been assessed on a real IoT dataset composed by over than 15M of collected sensor records. Obtained results demonstrate that our method outperforms both single predictors and the widely used strategy of the mean providing inherently robust predictions.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4112
Author(s):  
Fidel Alejandro Rodríguez-Corbo ◽  
Leyre Azpilicueta ◽  
Mikel Celaya-Echarri ◽  
Peio Lopez-Iturri ◽  
Ana V. Alejos ◽  
...  

The characterization of different vegetation/vehicle densities and their corresponding effects on large-scale channel parameters such as path loss can provide important information during the deployment of wireless communications systems under outdoor conditions. In this work, a deterministic analysis based on ray-launching (RL) simulation and empirical measurements for vehicle-to-infrastructure (V2I) communications for outdoor parking environments and smart parking solutions is presented. The study was carried out at a frequency of 28 GHz using directional antennas, with the transmitter raised above ground level under realistic use case conditions. Different radio channel impairments were weighed in, considering the progressive effect of first, the density of an incremental obstructed barrier of trees, and the effect of different parked vehicle densities within the parking lot. On the basis of these scenarios, large-scale parameters and temporal dispersion characteristics were obtained, and the effect of vegetation/vehicle density changes was assessed. The characterization of propagation impairments that different vegetation/vehicle densities can impose onto the wireless radio channel in the millimeter frequency range was performed. Finally, the results obtained in this research can aid communication deployment in outdoor parking conditions.


2004 ◽  
Vol 5 (2) ◽  
pp. 12-22 ◽  
Author(s):  
Zlatko Zlatev ◽  
Nikolay Diakov ◽  
Stanislav Pokraev

Sign in / Sign up

Export Citation Format

Share Document