SMTCoq: Mixing Automatic and Interactive Proof Technologies

Author(s):  
Chantal Keller
Keyword(s):  
Impact ◽  
2019 ◽  
Vol 2019 (10) ◽  
pp. 30-32
Author(s):  
Tomoyuki Morimae

In cloud quantum computing, a classical client delegate quantum computing to a remote quantum server. An important property of cloud quantum computing is the verifiability: the client can check the integrity of the server. Whether such a classical verification of quantum computing is possible or not is one of the most important open problems in quantum computing. We tackle this problem from the view point of quantum interactive proof systems. Dr Tomoyuki Morimae is part of the Quantum Information Group at the Yukawa Institute for Theoretical Physics at Kyoto University, Japan. He leads a team which is concerned with two main research subjects: quantum supremacy and the verification of quantum computing.


2006 ◽  
Vol 204 (12) ◽  
pp. 1852
Author(s):  
Jia Meng ◽  
Claire Quigley ◽  
Lawrence C. Paulson
Keyword(s):  

2001 ◽  
Vol 12 (04) ◽  
pp. 517-531
Author(s):  
OLEG VERBITSKY

The Parallel Repetition Theorem says that n-fold parallel execution of a two-prover one-round interactive proof system reduces the error probability exponentially in n. The bound on the error probability of the parallelized system depends on the error probability and the answer size of the single proof system. It is still unknown whether the theorem holds true with a bound depending only on the query size. This kind of a bound may be preferable whenever the query size is considerably smaller than the answer size, what really happens in some cryptographic protocols. Such a bound is only known in the case that queries to the provers are independent. The present paper extends this result to some cases of strong correlation between queries. In particular, a query-based variant of the Parallel Repetition Theorem is proven when the graph of dependence between queries to the provers is a tree and, in a bit weaker form, when this graph is a cycle.


Author(s):  
Stephan Schmitt ◽  
Lori Lorigo ◽  
Christoph Kreitz ◽  
Aleksey Nogin

1992 ◽  
Vol 39 (4) ◽  
pp. 859-868 ◽  
Author(s):  
Carsten Lund ◽  
Lance Fortnow ◽  
Howard Karloff ◽  
Noam Nisan

Author(s):  
Ben Toner

We describe a new technique for obtaining Tsirelson bounds, which are upper bounds on the quantum value of a Bell inequality. Since quantum correlations do not allow signalling, we obtain a Tsirelson bound by maximizing over all no-signalling probability distributions. This maximization can be cast as a linear programme. In a setting where three parties, A, B and C, share an entangled quantum state of arbitrary dimension, we (i) bound the trade-off between AB's and AC's violation of the Clauser–Horne–Shimony–Holt inequality and (ii) demonstrate that forcing B and C to be classically correlated prevents A and B from violating certain Bell inequalities, relevant for interactive proof systems and cryptography.


Author(s):  
Kannan Balasubramanian ◽  
Mala K.

Zero knowledge protocols provide a way of proving that a statement is true without revealing anything other than the correctness of the claim. Zero knowledge protocols have practical applications in cryptography and are used in many applications. While some applications only exist on a specification level, a direction of research has produced real-world applications. Zero knowledge protocols, also referred to as zero knowledge proofs, are a type of protocol in which one party, called the prover, tries to convince the other party, called the verifier, that a given statement is true. Sometimes the statement is that the prover possesses a particular piece of information. This is a special case of zero knowledge protocol called a zero-knowledge proof of knowledge. Formally, a zero-knowledge proof is a type of interactive proof.


Author(s):  
Berry Schoenmakers
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document