scholarly journals Optimal Supplier Selection in a Supply Chain with Predetermined Loading/Unloading Time Windows and Logistics Truck Share

Author(s):  
Alireza Fallahtafti ◽  
Iman Ghalehkhondabi ◽  
Gary R. Weckman
Author(s):  
Abhijit N. Bhirud ◽  
Suraj P. Langute ◽  
Somesh S. Jerath ◽  
Akshay J. Gote ◽  
Aniket R. Jadhav

2015 ◽  
Vol 8 (2/3) ◽  
pp. 180-205 ◽  
Author(s):  
Alireza Jahani ◽  
Masrah Azrifah Azmi Murad ◽  
Md. Nasir bin Sulaiman ◽  
Mohd. Hasan Selamat

Purpose – The purpose of this paper is to propose an approach that integrates three complementary perspectives, multi-agent systems, fuzzy logic and case-based reasoning. Unsatisfied customers, information overload and high uncertainty are the main challenges that are faced by today’s supply chains. In addition, a few existing agent-based approaches are tied to real-world supply chain functions like supplier selection. These approaches are static and do not adequately take the qualitative and quantitative factors into consideration. Therefore, an agent-based framework is needed to address these issues. Design/methodology/approach – The proposed approach integrates three complementary perspectives, multi-agent systems, fuzzy logic and case-based reasoning, as a common framework. These perspectives were rarely used together as a common framework in previous studies. Furthermore, an exploratory case study in an office furniture company is undertaken to illustrate the value of the framework. Findings – The proposed agent-based framework evaluates supply offers based on customers’ preferences, recommends alternative products in the case of stock-out and provides a collaborative environment among agents who represent different supply chain entities. The proposed fuzzy case-based reasoning (F-CBR) approach reduces the information overload by organizing them into the relevant cases that causes less overall search between cases. In addition, its fuzzy aspect addresses the high uncertainty of supply chains, especially when there are different customers’ orders with different preferences. Research limitations/implications – The present study does not include the functions of inventory management and negotiation between agents. Furthermore, only the case description and case retrieval phases of the case-based reasoning approach are investigated, and the remaining phases like case retaining, case reusing and case revising are not included in the scope of this paper. Originality/value – This framework balances the interests of different supply chain structural elements where each of them is represented by a specific agent for better collaboration, decision-making and problem-solving in a multi-agent environment. In addition, the supplier selection and order gathering mechanisms are developed based on customers’ orders.


2018 ◽  
Vol 13 (3) ◽  
pp. 605-625 ◽  
Author(s):  
Mohammad Khalilzadeh ◽  
Hadis Derikvand

Purpose Globalization of markets and pace of technological change have caused the growing importance of paying attention to supplier selection problem. Therefore, this study aims to choose the best suppliers by providing a mathematical model for the supplier selection problem considering the green factors and stochastic parameters. This paper aims to propose a multi-objective model to identify optimal suppliers for a green supply chain network under uncertainty. Design/methodology/approach The objective of this model is to select suppliers considering total cost, total quality parts and total greenhouse gas emissions. Also, uncertainty is tackled by stochastic programming, and the multi-objective model is solved as a single-objective model by the LP-metric method. Findings Twelve numerical examples are provided, and a sensitivity analysis is conducted to demonstrate the effectiveness of the developed mathematical model. Results indicate that with increasing market numbers and final product numbers, the total objective function value and run time increase. In case that decision-makers are willing to deal with uncertainty with higher reliability, they should consider whole environmental conditions as input parameters. Therefore, when the number of scenarios increases, the total objective function value increases. Besides, the trade-off between cost function and other objective functions is studied. Also, the benefit of the stochastic programming approach is proved. To show the applicability of the proposed model, different modes are defined and compared with the proposed model, and the results demonstrate that the increasing use of recyclable parts and application of the recycling strategy yield more economic savings and less costs. Originality/value This paper aims to present a more comprehensive model based on real-world conditions for the supplier selection problem in green supply chain under uncertainty. In addition to economic issue, environmental issue is considered from different aspects such as selecting the environment-friendly suppliers, purchasing from them and taking the probability of defective finished products and goods from suppliers into account.


Sign in / Sign up

Export Citation Format

Share Document