Dense Receptive Field Network: A Backbone Network for Object Detection

Author(s):  
Fei Gao ◽  
Chengguang Yang ◽  
Yisu Ge ◽  
Shufang Lu ◽  
Qike Shao
Author(s):  
Shaorong Xie ◽  
Chang Liu ◽  
Jiantao Gao ◽  
Xiaomao Li ◽  
Jun Luo ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1933
Author(s):  
Rixia Qin ◽  
Xiaohong Zhao ◽  
Wenbo Zhu ◽  
Qianqian Yang ◽  
Bo He ◽  
...  

Underwater fishing nets represent a danger faced by autonomous underwater vehicles (AUVs). To avoid irreparable damage to the AUV caused by fishing nets, the AUV needs to be able to identify and locate them autonomously and avoid them in advance. Whether the AUV can avoid fishing nets successfully depends on the accuracy and efficiency of detection. In this paper, we propose an object detection multiple receptive field network (MRF-Net), which is used to recognize and locate fishing nets using forward-looking sonar (FLS) images. The proposed architecture is a center-point-based detector, which uses a novel encoder-decoder structure to extract features and predict the center points and bounding box size. In addition, to reduce the interference of reverberation and speckle noises in the FLS image, we used a series of preprocessing operations to reduce the noises. We trained and tested the network with data collected in the sea using a Gemini 720i multi-beam forward-looking sonar and compared it with state-of-the-art networks for object detection. In order to further prove that our detector can be applied to the actual detection task, we also carried out the experiment of detecting and avoiding fishing nets in real-time in the sea with the embedded single board computer (SBC) module and the NVIDIA Jetson AGX Xavier embedded system of the AUV platform in our lab. The experimental results show that in terms of computational complexity, inference time, and prediction accuracy, MRF-Net is better than state-of-the-art networks. In addition, our fishing net avoidance experiment results indicate that the detection results of MRF-Net can support the accurate operation of the later obstacle avoidance algorithm.


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110113
Author(s):  
Xianghua Ma ◽  
Zhenkun Yang

Real-time object detection on mobile platforms is a crucial but challenging computer vision task. However, it is widely recognized that although the lightweight object detectors have a high detection speed, the detection accuracy is relatively low. In order to improve detecting accuracy, it is beneficial to extract complete multi-scale image features in visual cognitive tasks. Asymmetric convolutions have a useful quality, that is, they have different aspect ratios, which can be used to exact image features of objects, especially objects with multi-scale characteristics. In this paper, we exploit three different asymmetric convolutions in parallel and propose a new multi-scale asymmetric convolution unit, namely MAC block to enhance multi-scale representation ability of CNNs. In addition, MAC block can adaptively merge the features with different scales by allocating learnable weighted parameters to three different asymmetric convolution branches. The proposed MAC blocks can be inserted into the state-of-the-art backbone such as ResNet-50 to form a new multi-scale backbone network of object detectors. To evaluate the performance of MAC block, we conduct experiments on CIFAR-100, PASCAL VOC 2007, PASCAL VOC 2012 and MS COCO 2014 datasets. Experimental results show that the detection precision can be greatly improved while a fast detection speed is guaranteed as well.


2018 ◽  
Vol 45 (8) ◽  
pp. 786-791
Author(s):  
Vani Natalia Kuntjono ◽  
Seunghyun Ko ◽  
Yang Fang ◽  
Geunsik Jo

2022 ◽  
Vol 2161 (1) ◽  
pp. 012064
Author(s):  
M Dhruv ◽  
R Sai Chandra Teja ◽  
R Sri Devi ◽  
S Nagesh Kumar

Abstract COVID-19 is an emerging infectious disease that has been rampant worldwide since its onset causing Lung irregularity and severe respiratory failure due to pneumonia. The Community-Acquired Pneumonia (CAP), Normal, and COVID-19 Computed Tomography (CT) scan images are classified using Involution Receptive Field Network from Large COVID-19 CT scan slice dataset. The proposed lightweight Involution Receptive Field Network (InRFNet) is spatial specific and channel-agnostic with Receptive Field structure to enhance the feature map extraction. The InRFNet model evaluation results show high training (99%) and validation (96%) accuracy. The performance metrics of the InRFNet model are Sensitivity (94.48%), Specificity (97.87%), Recall (96.34%), F1-score (96.33%), kappa score (94.10%), ROC-AUC (99.41%), mean square error (0.04), and the total number of parameters (33100).


Sign in / Sign up

Export Citation Format

Share Document