Diverse receptive field network with context aggregation for fast object detection

Author(s):  
Shaorong Xie ◽  
Chang Liu ◽  
Jiantao Gao ◽  
Xiaomao Li ◽  
Jun Luo ◽  
...  
Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1933
Author(s):  
Rixia Qin ◽  
Xiaohong Zhao ◽  
Wenbo Zhu ◽  
Qianqian Yang ◽  
Bo He ◽  
...  

Underwater fishing nets represent a danger faced by autonomous underwater vehicles (AUVs). To avoid irreparable damage to the AUV caused by fishing nets, the AUV needs to be able to identify and locate them autonomously and avoid them in advance. Whether the AUV can avoid fishing nets successfully depends on the accuracy and efficiency of detection. In this paper, we propose an object detection multiple receptive field network (MRF-Net), which is used to recognize and locate fishing nets using forward-looking sonar (FLS) images. The proposed architecture is a center-point-based detector, which uses a novel encoder-decoder structure to extract features and predict the center points and bounding box size. In addition, to reduce the interference of reverberation and speckle noises in the FLS image, we used a series of preprocessing operations to reduce the noises. We trained and tested the network with data collected in the sea using a Gemini 720i multi-beam forward-looking sonar and compared it with state-of-the-art networks for object detection. In order to further prove that our detector can be applied to the actual detection task, we also carried out the experiment of detecting and avoiding fishing nets in real-time in the sea with the embedded single board computer (SBC) module and the NVIDIA Jetson AGX Xavier embedded system of the AUV platform in our lab. The experimental results show that in terms of computational complexity, inference time, and prediction accuracy, MRF-Net is better than state-of-the-art networks. In addition, our fishing net avoidance experiment results indicate that the detection results of MRF-Net can support the accurate operation of the later obstacle avoidance algorithm.


2022 ◽  
Vol 2161 (1) ◽  
pp. 012064
Author(s):  
M Dhruv ◽  
R Sai Chandra Teja ◽  
R Sri Devi ◽  
S Nagesh Kumar

Abstract COVID-19 is an emerging infectious disease that has been rampant worldwide since its onset causing Lung irregularity and severe respiratory failure due to pneumonia. The Community-Acquired Pneumonia (CAP), Normal, and COVID-19 Computed Tomography (CT) scan images are classified using Involution Receptive Field Network from Large COVID-19 CT scan slice dataset. The proposed lightweight Involution Receptive Field Network (InRFNet) is spatial specific and channel-agnostic with Receptive Field structure to enhance the feature map extraction. The InRFNet model evaluation results show high training (99%) and validation (96%) accuracy. The performance metrics of the InRFNet model are Sensitivity (94.48%), Specificity (97.87%), Recall (96.34%), F1-score (96.33%), kappa score (94.10%), ROC-AUC (99.41%), mean square error (0.04), and the total number of parameters (33100).


2020 ◽  
Vol 40 (4) ◽  
pp. 0415001
Author(s):  
谢学立 Xie Xueli ◽  
李传祥 Li Chuanxiang ◽  
杨小冈 Yang Xiaogang ◽  
席建祥 Xi Jianxiang ◽  
陈彤 Chen Tong

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1066
Author(s):  
Peng Jia ◽  
Fuxiang Liu

At present, the one-stage detector based on the lightweight model can achieve real-time speed, but the detection performance is challenging. To enhance the discriminability and robustness of the model extraction features and improve the detector’s detection performance for small objects, we propose two modules in this work. First, we propose a receptive field enhancement method, referred to as adaptive receptive field fusion (ARFF). It enhances the model’s feature representation ability by adaptively learning the fusion weights of different receptive field branches in the receptive field module. Then, we propose an enhanced up-sampling (EU) module to reduce the information loss caused by up-sampling on the feature map. Finally, we assemble ARFF and EU modules on top of YOLO v3 to build a real-time, high-precision and lightweight object detection system referred to as the ARFF-EU network. We achieve a state-of-the-art speed and accuracy trade-off on both the Pascal VOC and MS COCO data sets, reporting 83.6% AP at 37.5 FPS and 42.5% AP at 33.7 FPS, respectively. The experimental results show that our proposed ARFF and EU modules improve the detection performance of the ARFF-EU network and achieve the development of advanced, very deep detectors while maintaining real-time speed.


Sign in / Sign up

Export Citation Format

Share Document