scholarly journals Comparative Analysis of Simultaneous Transcranial Doppler and Perfusion Computed Tomography for Cerebral Perfusion Evaluation in Patients with Traumatic Brain Injury

Author(s):  
Alex Trofimov ◽  
Artem Kopylov ◽  
Michael Dobrzeniecki ◽  
Anatoly Sheludyakov ◽  
Dmitry Martynov ◽  
...  
2019 ◽  
Vol 8 (5) ◽  
pp. 701
Author(s):  
Shannon Cooper ◽  
Cino Bendinelli ◽  
Andrew Bivard ◽  
Mark Parsons ◽  
Zsolt J. Balogh

Introduction: Cerebral perfusion computed tomography (PCT) provides crucial information in acute stroke and has an increasing role in traumatic brain injury (TBI) management. Most studies on TBI patients utilize 64-slice scanners, which are limited to four brain slices (limited-brain PCT, LBPCT). Newer 320-slice scanners depict the whole brain perfusion status (WBPCT). We aimed to identify the additional information gained with WBPCT when compared to LBPCT. Patients and methods: Forty-nine patients with severe TBI were investigated within 48 h from admission with WBPCT. Findings from LBPCT were compared with findings from WBPCT. Results: A perfusion abnormality was identified in 39 (80%) and 37 (76%) patients by WBPCT and LBPCT, respectively (p = 0.8). There were 90 and 68 perfusion abnormalities identified by WBPCT and LBPCT, respectively (p < 0.001). In the 39 patients with a perfusion abnormality detected by WBPCT, 15 (38%) had further perfusion abnormalities outside the LBPCT area of coverage. Thirty-six (92%) patients had a larger perfusion abnormality upon WBPCT compared with LBPCT. Additional information gained showed some statistically significant correlation with clinical outcome. Conclusions: In severe TBI patients, WBPCT provides extra information compared to LBPC. The limitations of LBPCT should be considered when evaluating studies reporting on PCT findings and their association with outcomes.


2017 ◽  
Vol 14 (02/03) ◽  
pp. 152-155
Author(s):  
Rajagopal Ramanan ◽  
Mathew Joseph

Abstract Title Utility of transcranial Doppler (TCD) in estimating cerebral perfusion pressure (eCPP) in traumatic brain injury—a prospective observational trial. Aim To validate the utility of a noninvasive technique of eCPP estimation using transcranial Doppler (TCD). Materials and Methods Eighteen patients with severe traumatic brain injury (TBI) requiring intracranial pressure (ICP) monitoring as per the Brain Trauma Foundation guidelines were prospectively recruited for the study. ICP was measured in all patients using an intraventricular catheter. Mean arterial pressure (MAP) was recorded from an intra-arterial catheter. Cerebral perfusion pressure (CPP) was calculated as the difference between MAP and ICP. Middle cerebral blood flow velocities were recorded using TCD, and CPP was estimated from the middle cerebral artery (MCA) flow velocities (eCPP) using the formula eCPP = (MAP × end diastolic velocity [EDV]/mean velocity [MV]) + 14. Total 185 simultaneous readings of CPP and eCPP were available for analysis. Reliability statistics between CPP and eCPP were computed to calculate the intraclass correlation (ICC). Results The average CPP measured using intraventricular catheter was 73.2 (+/−12.4), and the mean estimated eCPP was 76.7 (+/−10.9). We found a very good Pearson's correlation between CPP and eCPP (r = 0.743) with a Cronbach's α of 0.843. In 86.2% of examinations, the estimation error of measuring CPP was within 10 mm Hg, and in 93.1% examinations, it was within 15 mm Hg. Conclusion eCPP estimated using TCD can serve as reliable noninvasive alternative in situations in which ICP monitoring is not available, even in moderate or mild head injury.


Sign in / Sign up

Export Citation Format

Share Document