Perfectly Secure Oblivious RAM with Sublinear Bandwidth Overhead

Author(s):  
Michael Raskin ◽  
Mark Simkin
2018 ◽  
Vol 2018 (4) ◽  
pp. 64-84 ◽  
Author(s):  
Sameer Wagh ◽  
Paul Cuff ◽  
Prateek Mittal

Abstract In this work, we investigate if statistical privacy can enhance the performance of ORAM mechanisms while providing rigorous privacy guarantees. We propose a formal and rigorous framework for developing ORAM protocols with statistical security viz., a differentially private ORAM (DP-ORAM). We present Root ORAM, a family of DP-ORAMs that provide a tunable, multi-dimensional trade-off between the desired bandwidth overhead, local storage and system security. We theoretically analyze Root ORAM to quantify both its security and performance. We experimentally demonstrate the benefits of Root ORAM and find that (1) Root ORAM can reduce local storage overhead by about 2× for a reasonable values of privacy budget, significantly enhancing performance in memory limited platforms such as trusted execution environments, and (2) Root ORAM allows tunable trade-offs between bandwidth, storage, and privacy, reducing bandwidth overheads by up to 2×-10× (at the cost of increased storage/statistical privacy), enabling significant reductions in ORAM access latencies for cloud environments. We also analyze the privacy guarantees of DP-ORAMs through the lens of information theoretic metrics of Shannon entropy and Min-entropy [16]. Finally, Root ORAM is ideally suited for applications which have a similar access pattern, and we showcase its utility via the application of Private Information Retrieval.


2021 ◽  
Vol 34 (3) ◽  
Author(s):  
Mor Weiss ◽  
Daniel Wichs
Keyword(s):  

Author(s):  
Tao Luo ◽  
LiangMin Wang ◽  
ShangNan Yin ◽  
Hao Shentu ◽  
Hui Zhao

AbstractEdge computing has developed rapidly in recent years due to its advantages of low bandwidth overhead and low delay, but it also brings challenges in data security and privacy. Website fingerprinting (WF) is a passive traffic analysis attack that threatens website privacy which poses a great threat to user’s privacy and web security. It collects network packets generated while a user accesses website, and then uses a series of techniques to discover patterns of network packets to infer the type of website user accesses. Many anonymous networks such as Tor can meet the need of hide identity from users in network activities, but they are also threatened by WF attacks. In this paper, we propose a website fingerprinting obfuscation method against intelligent fingerprinting attacks, called Random Bidirectional Padding (RBP). It is a novel website fingerprinting defense technology based on time sampling and random bidirectional packets padding, which can covert the real packets distribution to destroy the Inter-Arrival Time (IAT) features in the traffic sequence and increase the difference between the datasets with random bidirectional virtual packets padding. We evaluate the defense against state-of-the-art website fingerprinting attacks in real scenarios, and show its effectiveness.


2021 ◽  
Author(s):  
Yi Wang ◽  
Weixuan Chen ◽  
Xianhua Wang ◽  
Rui Mao

Author(s):  
Gilad Asharov ◽  
Ilan Komargodski ◽  
Wei-Kai Lin ◽  
Kartik Nayak ◽  
Enoch Peserico ◽  
...  
Keyword(s):  

2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Kholoud Al-Saleh ◽  
Abdelfettah Belghith

Oblivious Random-Access Memory (ORAM) is becoming a fundamental component for modern outsourced storages as a cryptographic primitive to prevent information leakage from a user access pattern. The major obstacle to its proliferation has been its significant bandwidth overhead. Recently, several works proposed acceptable low-overhead constructions, but unfortunately they are only evaluated using algorithmic complexities which hide valuable constants that severely impact their practicality. Four of the most promising constructions are Path ORAM, Ring ORAM, XOR Ring ORAM, and Onion ORAM. However, they have never been thoroughly compared against each other and tested on the same experimental platform. To address this issue, we provide a thorough study and assessment of these recent ORAM constructions and implement them under the same testbed. We perform extensive experiments to provide insights into their performance characteristics, simplicity, and practicality in terms of processing time, server storage, client storage, and communication cost. Our extensive experiments show that despite the claimed algorithmic efficiency of Ring and Onion ORAMs and their judicious limited bandwidth requirements, Path ORAM stands out to be the simplest and most efficient ORAM construction.


Sign in / Sign up

Export Citation Format

Share Document