access memory
Recently Published Documents


TOTAL DOCUMENTS

2862
(FIVE YEARS 596)

H-INDEX

78
(FIVE YEARS 12)

2022 ◽  
Vol 18 (2) ◽  
pp. 1-22
Author(s):  
Alexander Jones ◽  
Aaron Ruen ◽  
Rashmi Jha

This work reports a spiking neuromorphic architecture for associative memory simulated in a SPICE environment using recently reported gated-RRAM (resistive random-access memory) devices as synapses alongside neurons based on complementary metal-oxide semiconductors (CMOSs). The network utilizes a Verilog A model to capture the behavior of the gated-RRAM devices within the architecture. The model uses parameters obtained from experimental gated-RRAM devices that were fabricated and tested in this work. Using these devices in tandem with CMOS neuron circuitry, our results indicate that the proposed architecture can learn an association in real time and retrieve the learned association when incomplete information is provided. These results show the promise for gated-RRAM devices for associative memory tasks within a spiking neuromorphic architecture framework.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 240
Author(s):  
Beomjun Kim ◽  
Yongtae Kim ◽  
Prashant Nair ◽  
Seokin Hong

STT-RAM (Spin-Transfer Torque Random Access Memory) appears to be a viable alternative to SRAM-based on-chip caches. Due to its high density and low leakage power, STT-RAM can be used to build massive capacity last-level caches (LLC). Unfortunately, STT-RAM has a much longer write latency and a much greater write energy than SRAM. Researchers developed hybrid caches made up of SRAM and STT-RAM regions to cope with these challenges. In order to store as many write-intensive blocks in the SRAM region as possible in hybrid caches, an intelligent block placement policy is essential. This paper proposes an adaptive block placement framework for hybrid caches that incorporates metadata embedding (ADAM). When a cache block is evicted from the LLC, ADAM embeds metadata (i.e., write intensity) into the block. Metadata embedded in the cache block are then extracted and used to determine the block’s write intensity when it is fetched from main memory. Our research demonstrates that ADAM can enhance performance by 26% (on average) when compared to a baseline block placement scheme.


2022 ◽  
Vol 2 ◽  
Author(s):  
Fayez Gebali ◽  
Mohammad Mamun

Physically unclonable functions (PUFs) are now an essential component for strengthening the security of Internet of Things (IoT) edge devices. These devices are an important component in many infrastructure systems such as telehealth, commerce, industry, etc. Traditionally these devices are the weakest link in the security of the system since they have limited storage, processing, and energy resources. Furthermore they are located in unsecured environments and could easily be the target of tampering and various types of attacks. We review in this work the structure of most salient types of PUF systems such as static RAM static random access memory (SRAM), ring oscillator (RO), arbiter PUFs, coating PUFs and dynamic RAM dynamic random access memory (DRAM). We discuss statistical models for the five most common types of PUFs and identify the main parameters defining their performance. We review some of the most recent algorithms that can be used to provide stable authentication and secret key generation without having to use helper data or secure sketch algorithms. Finally we provide results showing the performance of these devices and how they depend on the authentication algorithm used and the main system parameters.


2022 ◽  
Vol 1048 ◽  
pp. 198-202
Author(s):  
K.M. Shafi ◽  
K. Muhammed Shibu ◽  
N.K. Sulfikarali ◽  
K.P. Biju

In this work, we fabricated ZrO2 based resistive random access memory by sol-gel spin coating technique and investigated its structural, optical and resistive switching properties. The X-ray diffraction pattern revealed that 400 °C annealed ZrO2 thin film has tetragonal structure. The optical band gap value of ZrO2 thin film obtained was 5.51 eV. The resistive switching behaviour of W/ZrO2/ITO capacitor like structure was studied. It was found that no initial electroforming process required for the device. The fabricated devices show a self-compliance bipolar resistive switching behaviour and have high on off ratio (>102). Our result suggests that solution processed ZrO2 has great potential to develop transparent and flexible resistive random access memory devices.


2022 ◽  
Vol 8 ◽  
Author(s):  
Xiaojuan Lian ◽  
Jinke Fu ◽  
Zhixuan Gao ◽  
Wang Ren ◽  
Xiang Wan ◽  
...  

Phase-change random access memory (PCRAM) is widely regarded as one of the most promising candidates to replace Flash memory as the next generation of non-volatile memories due to its high-speed and low-power consumption characteristics. Recent advent of the blade-type PCRAM with low programming current merit further confirms its prospects. The thermoelectric effects existing inside the PCRAM devices have always been an important factor that determines the phase-transformation kinetics due to a fact that it allows PCRAM to have electric polarity dependent characteristics. However, the potential physics governing the thermoelectric effects for blade-type PCRAM device still remains vague. We establish a three-dimensional (3D) electro-thermal and phase-transformation model to study the influences of thermal boundary resistance (TBR) and device scaling on the thermoelectric effects of the blade-type PCRAM during its “RESET” operation. Our research shows that the presence of TBR significantly improves the electric polarity-dependent characteristics of the blade-type PCRAM, and such polarity-dependent characteristic is found immune to the scaling of the device. It is therefore possible to optimize the thermoelectric effects of the blade-type PCRAM through appropriately tailoring the TBR parameters, thus further lowering resulting power consumption.


Author(s):  
Mohd Syafiq Mispan ◽  
Aiman Zakwan Jidin ◽  
Muhammad Raihaan Kamarudin ◽  
Haslinah Mohd Nasir

An emerging technology known as Physical unclonable function (PUF) can provide a hardware root-of-trust in building the trusted computing system. PUF exploits the intrinsic process variations during the integrated circuit (IC) fabrication to generate a unique response. This unique response differs from one PUF to the other similar type of PUFs. Static random-access memory PUF (SRAM-PUF) is one of the memory-based PUFs in which the response is generated during the memory power-up process. Non-volatile memory (NVM) architecture like SRAM is available in off-the-shelf microcontroller devices. Exploiting the inherent SRAM as PUF could wide-spread the adoption of PUF. Therefore, in this study, we evaluate the suitability of inherent SRAM available in ATMega2560 microcontroller on Arduino platform as PUF that can provide a unique fingerprint. First, we analyze the start-up values (SUVs) of memory cells and select only the cells that show random values after the power-up process. Subsequently, we statistically analyze the characteristic of fifteen SRAM-PUFs which include uniqueness, reliability, and uniformity. Based on our findings, the SUVs of fifteen on-chip SRAMs achieve 42.64% uniqueness, 97.28% reliability, and 69.16% uniformity. Therefore, we concluded that the available SRAM in off-the-shelf commodity hardware has good quality to be used as PUF.


2021 ◽  
Author(s):  
Alireza Abbasi ◽  
Farbod Setoudeh ◽  
Mohammad Bagher Tavakoli ◽  
Ashkan Horri

Abstract The present paper proposes a six-FinFET two-memcapacitor (6T2MC) non-volatile static random-access memory (NVSRAM). In this design, the two memcapacitors are used as non-volatile memory elements. The proposed cell is flexible against data loss when turned off and offers significant improvement in read and write operations compared to previous NVSRAMs. The performance of the new NVSRAM design is evaluated in terms of read and write operation at particular nanometric feature sizes. Moreover, the proposed 6T2MC cell is compared with 8T2R, 8T1R, 7T1R, and 7T2R cells. The results show that 6T2MC has a 5.50% lower write delay and 98.35% lower read delay compared to 7T2R and 7T1R cells, respectively. The 6T2MC cell exhibits 38.86% lower power consumption and 23.80% lower leakage power than 7T2R and 7T1R cells. The proposed cell is significantly improved in terms of HSNM, RSNM, and WSNM compared to 8T2R, 8T1R, 7T2R, and 7T1R cells, respectively. Important cell parameters, such as power consumption, data read/write delay, and SNM, are significantly improved. The superior characteristics of FinFET over MOSFET and the combination of this technology with memcapacitors lead to significant improvement in the proposed design.


Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 61
Author(s):  
Esteban Garzón ◽  
Adam Teman ◽  
Marco Lanuzza

The ever-growing interest in cryogenic applications has prompted the investigation for energy-efficient and high-density memory technologies that are able to operate efficiently at extremely low temperatures. This work analyzes three appealing embedded memory technologies under cooling—from room temperature (300 K) down to cryogenic levels (77 K). As the temperature goes down to 77 K, six-transistor static random-access memory (6T-SRAM) presents slight improvements for static noise margin (SNM) during hold and read operations, while suffering from lower (−16%) write SNM. Gain-cell embedded DRAM (GC-eDRAM) shows significant benefits under these conditions, with read voltage margins and data retention time improved by about 2× and 900×, respectively. Non-volatile spin-transfer torque magnetic random access memory (STT-MRAM) based on single- or double-barrier magnetic tunnel junctions (MTJs) exhibit higher read voltage sensing margins (36% and 48%, respectively), at the cost of longer write access time (1.45× and 2.1×, respectively). The above characteristics make the considered memory technologies to be attractive candidates not only for high-performance computing, but also enable the possibility to bridge the gap from room-temperature to the realm of cryogenic applications that operate down to liquid helium temperatures and below.


Sign in / Sign up

Export Citation Format

Share Document