Radiation and Chemotherapy for Brainstem Tumors

2020 ◽  
pp. 321-345
Author(s):  
Katherine E. Warren
Keyword(s):  
2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii322-iii322
Author(s):  
Raoull Hoogendijk ◽  
Jasper van der Lugt ◽  
Dannis van Vuurden ◽  
Eelco Hoving ◽  
Leontien Kremer ◽  
...  

Abstract BACKGROUND Variation in survival of pediatric central nervous system (CNS) tumors is large between countries. Within Europe, the Netherlands had one of the worst reported survival rates of malignant CNS (mCNS) tumors during 2000–2007. METHODS Using the Netherlands Cancer Registry, we evaluated trends in incidence and survival of pediatric mCNS tumors (behavior /3, 5th digit in the morphology code) diagnosed between 1990–2017. RESULTS 839 newly-diagnosed mCNS tumor patients <18 years were registered between 1990–2017. Incidence of mCNS tumors remained stable (average incidence rate, 21.6 per million person-years). However, an increased incidence of malignant gliomas, NOS was found (Estimated Annual Percentage Change (EAPC) 11.6% p<0.001). This appears to be related to a registration shift between 1990–1999 and 2000–2009 as brainstem tumors increased (+25%, n=79) for astrocytomas and other gliomas but decreased (-31%, n=32) for unspecified intracranial and intraspinal neoplasms. Overall, 5-year observed survival (5Y-OS) of mCNS tumors increased from 51% in 1990–1999 to 61% in 2010–2017 (P-for-trend<0.001). This increase was not constant over time, as 5Y-OS for the period 2000–2009 was 47%. The only significant decrease in survival was found for malignant astrocytomas and other gliomas with a 5Y-OS of 56% in 1990–1999 decreasing to 48% in 2010–2017 (P-for-trend<0.001). CONCLUSION Between 1990–2017 incidence of mCNS tumors in the Netherlands remained stable and survival increased. However, a decrease in survival was seen for malignant astrocytomas and other gliomas, which is partially explained by the registration shift of brainstem tumors. The impact of this shift on survival for all mCNS tumors is subject to further research.


2014 ◽  
Vol 125 ◽  
pp. S335
Author(s):  
E. Monge Márquez ◽  
R. Vázquez Rodríguez ◽  
G. Diaz Cano ◽  
M. Jiménez Hernández ◽  
J. Márquez Rivas
Keyword(s):  

2005 ◽  
Vol 18 (6) ◽  
pp. 1-6 ◽  
Author(s):  
James Lee ◽  
George I. Jallo ◽  
Michael Guarnieri ◽  
Benjamin S. Carson ◽  
Margret B. Penno

Object Survival rates for high-grade brainstem tumors are approximately 10% and optimal therapy has yet to be determined. Development of a satisfactory brainstem tumor model is necessary for testing new therapeutic paradigms that may prolong survival. The authors report the technique, functional progression, radiological appearance, and histopathological features of a novel brainstem tumor model in rats. Methods Thirty female Fischer 344 rats were randomized (10 animals/group) to receive an injection of either 3 μl of 9L gliosarcoma cells (100,000 cells), 3 μl of F98 glioma cells (100,000 cells), or 3 μl of medium (Dulbecco modified Eagle medium) into the pontine tegmentum of the brainstem. Using a cannulated guide screw system implanted in the skull of the animal, rats in each group were injected at coordinates 1.4 mm to the right of the sagittal and 1 mm anterior to the lambdoid sutures, at a depth of 7 mm from the dura mater. The angle of the syringe during injection was anteflexed 5° from the vertical. Postoperatively, the rats were evaluated for neurological deficits by using an automated rotarod test. High-resolution [18F]fluorodeoxyglucose–positron emission tomography (FDG-PET) fused with computerized tomography (CT) scans were acquired pre- and postoperatively through the onset of hemiparesis and correlated accordingly. Kaplan–Meier curves were generated for survival and disease progression, and brains were processed postmortem for histopathological investigation. The 9L and F98 tumor cells grew in 95% of the animals in which they were injected and resulted in a statistically significant mean onset of hemiparesis of 16.5 ± 0.56 days (p = 0.001, log-rank test), compared with animals in the control group, which had no neurological deficits by Day 45. The FDG-PET studies coregistered with CT scans demonstrated space-occupying brainstem lesions, and this finding was confirmed by histological studies. Animals in the control group showed no functional, radiological, or pathological signs of tumor. Conclusions Progression to hemiparesis was consistent in all tumor-injected animals, with predictable onset of symptoms occurring approximately 17 days postsurgery. The histopathological and radiological characteristics of the 9L and F98 brainstem tumors were comparable to those of aggressive primary human brainstem tumors. Establishment of this animal tumor model will facilitate the testing of new therapeutic paradigms for the treatment of these lesions.


2020 ◽  
pp. 1957-1983
Author(s):  
Peter A. Chiarelli ◽  
Jason K. Chu ◽  
Mark D. Krieger
Keyword(s):  

2019 ◽  
Vol 126 ◽  
pp. 699
Author(s):  
Francisco de Assis Aquino Gondim ◽  
Florian P. Thomas

1998 ◽  
Vol 108 (9) ◽  
pp. 1408-1412 ◽  
Author(s):  
Patrick W. Slater ◽  
D. Bradley Welling ◽  
Joseph H. Goodman ◽  
Michael E. Miner

2012 ◽  
Vol 36 (2) ◽  
pp. 311-320 ◽  
Author(s):  
Tao Sun ◽  
Weiqing Wan ◽  
Zhen Wu ◽  
Junting Zhang ◽  
Liwei Zhang

Sign in / Sign up

Export Citation Format

Share Document