Hyperbolic Numbers, Genetics and Musicology

Author(s):  
Sergey V. Petoukhov
Keyword(s):  
Author(s):  
Sergey Petoukhov

The article is devoted to applications of 2-dimensional hyperbolic numbers and their algebraic 2n-dimensional extensions in modeling some genetic and cultural phenomena. Mathematical properties of hyperbolic numbers and their bisymmetric matrix representations are described in a connection with their application to analyze the following structures: alphabets of DNA nucleobases; inherited phyllotaxis phenomena; Punnett squares in Mendelian genetics; the psychophysical Weber-Fechner law; long literary Russian texts (in their special binary representations). New methods of algebraic analysis of the harmony of musical works are proposed, taking into account the innate predisposition of people to music. The hypothesis is put forward that sets of eigenvectors of matrix representations of basis units of 2n-dimensional hyperbolic numbers play an important role in transmitting biological information. A general hyperbolic rule regarding the oligomer cooperative organization of different genomes is described jointly with its quantum-information model. Besides, the hypothesis about some analog of the Weber-Fechner law for sequences of spikes in single nerve fibers is formulated. The proposed algebraic approach is connected with the theme of the grammar of biology and applications of bisymmetric doubly stochastic matrices. Applications of hyperbolic numbers reveal hidden interrelations between structures of different biological and physical phenomena. They lead to new approaches in mathematical modeling genetic phenomena and innate biological structures.


Author(s):  
Francesco Catoni ◽  
Dino Boccaletti ◽  
Roberto Cannata ◽  
Vincenzo Catoni ◽  
Paolo Zampetti
Keyword(s):  

2014 ◽  
Vol 24 (06) ◽  
pp. 1430017 ◽  
Author(s):  
M. Fernández-Guasti

The quadratic iteration is mapped using a nondistributive real scator algebra in three dimensions. The bound set S has a rich fractal-like boundary. Periodic points on the scalar axis are necessarily surrounded by off axis divergent magnitude points. There is a one-to-one correspondence of this set with the bifurcation diagram of the logistic map. The three-dimensional S set exhibits self-similar 3D copies of the elementary fractal along the negative scalar axis. These 3D copies correspond to the windows amid the chaotic behavior of the logistic map. Nonetheless, the two-dimensional projection becomes identical to the nonfractal quadratic iteration produced with hyperbolic numbers. Two- and three-dimensional renderings are presented to explore some of the features of this set.


2019 ◽  
Vol 3 (1) ◽  
pp. 6 ◽  
Author(s):  
Vance Blankers ◽  
Tristan Rendfrey ◽  
Aaron Shukert ◽  
Patrick Shipman

Julia and Mandelbrot sets, which characterize bounded orbits in dynamical systems over the complex numbers, are classic examples of fractal sets. We investigate the analogs of these sets for dynamical systems over the hyperbolic numbers. Hyperbolic numbers, which have the form x + τ y for x , y ∈ R , and τ 2 = 1 but τ ≠ ± 1 , are the natural number system in which to encode geometric properties of the Minkowski space R 1 , 1 . We show that the hyperbolic analog of the Mandelbrot set parameterizes the connectedness of hyperbolic Julia sets. We give a wall-and-chamber decomposition of the hyperbolic plane in terms of these Julia sets.


Sign in / Sign up

Export Citation Format

Share Document