Metamorphic Testing in Fault Localization of Model Transformations

Author(s):  
Keke Du ◽  
Mingyue Jiang ◽  
Zuohua Ding ◽  
Hongyun Huang ◽  
Ting Shu
2018 ◽  
Vol 27 (3) ◽  
pp. 1-50 ◽  
Author(s):  
Javier Troya ◽  
Sergio Segura ◽  
Jose Antonio Parejo ◽  
Antonio Ruiz-Cortés

2015 ◽  
Vol 41 (5) ◽  
pp. 490-506 ◽  
Author(s):  
Loli Burgueno ◽  
Javier Troya ◽  
Manuel Wimmer ◽  
Antonio Vallecillo

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 14054-14064
Author(s):  
Pengfei Li ◽  
Mingyue Jiang ◽  
Zuohua Ding

2020 ◽  
Vol 16 (2) ◽  
pp. 214
Author(s):  
Wang Yong ◽  
Liu SanMing ◽  
Li Jun ◽  
Cheng Xiangyu ◽  
Zhou Wan

Author(s):  
Rommel Estores ◽  
Karo Vander Gucht

Abstract This paper discusses a creative manual diagnosis approach, a complementary technique that provides the possibility to extend Automatic Test Pattern Generation (ATPG) beyond its own limits. The authors will discuss this approach in detail using an actual case – a test coverage issue where user-generated ATPG patterns and the resulting ATPG diagnosis isolated the fault to a small part of the digital core. However, traditional fault localization techniques was unable to isolate the fault further. Using the defect candidates from ATPG diagnosis as a starting point, manual diagnosis through fault Injection and fault simulation was performed. Further fault localization was performed using the ‘not detected’ (ND) and/or ‘detected’ (DT) fault classes for each of the available patterns. The result has successfully deduced the defect candidates until the exact faulty net causing the electrical failure was identified. The ability of the FA lab to maximize the use of ATPG in combination with other tools/techniques to investigate failures in detail; is crucial in the fast root cause determination and, in case of a test coverage, aid in having effective test screen method implemented.


Author(s):  
Kuo Hsiung Chen ◽  
Wen Sheng Wu ◽  
Yu Hsiang Shu ◽  
Jian Chan Lin

Abstract IR-OBIRCH (Infrared Ray – Optical Beam Induced Resistance Change) is one of the main failure analysis techniques [1] [2] [3] [4]. It is a useful tool to do fault localization on leakage failure cases such as poor Via or contact connection, FEoL or BEoL pattern bridge, and etc. But the real failure sites associated with the above failure mechanisms are not always found at the OBIRCH spot locations. Sometimes the real failure site is far away from the OBIRCH spot and it will result in inconclusive PFA Analysis. Finding the real failure site is what matters the most for fault localization detection. In this paper, we will introduce one case using deep sub-micron process generation which suffers serious high Isb current at wafer donut region. In this case study a BEoL Via poor connection is found far away from the OBIRCH spots. This implies that layout tracing skill and relation investigation among OBIRCH spots are needed for successful failure analysis.


Author(s):  
Binh Nguyen

Abstract For those attempting fault isolation on computer motherboard power-ground short issues, the optimal technique should utilize existing test equipment available in the debug facility, requiring no specialty equipment as well as needing a minimum of training to use effectively. The test apparatus should be both easy to set up and easy to use. This article describes the signal injection and oscilloscope technique which meets the above requirements. The signal injection and oscilloscope technique is based on the application of Ohm's law in a short-circuit condition. Two experiments were conducted to prove the effectiveness of these techniques. Both experiments simulate a short-circuit condition on the VCC3 power rail of a good working PC motherboard and then apply the signal injection and oscilloscope technique to localize the short. The technique described is a simple, low cost and non-destructive method that helps to find the location of the power-ground short quickly and effectively.


Author(s):  
A.C.T. Quah ◽  
J.C.H. Phang ◽  
L.S. Koh ◽  
S.H. Tan ◽  
C.M. Chua

Abstract This paper describes a pulsed laser induced digital signal integration algorithm for pulsed laser operation that is compatible with existing ac-coupled and dc-coupled detection systems for fault localization. This algorithm enhances laser induced detection sensitivity without a lock-in amplifier. The best detection sensitivity is achieved at a pulsing frequency range between 500 Hz to 1.5 kHz. Within this frequency range, the algorithm is capable of achieving more than 9 times enhancement in detection sensitivity.


Sign in / Sign up

Export Citation Format

Share Document