Proximity-Based Federation of Smart Objects: Its Application Framework for Complex Secure Federation Scenarios

Author(s):  
Yuzuru Tanaka
2019 ◽  
Author(s):  
Nasir Saeed ◽  
Mohamed-Slim Alouini ◽  
Tareq Y. Al-Naffouri

<div>Localization is a fundamental task for optical internet</div><div>of underwater things (O-IoUT) to enable various applications</div><div>such as data tagging, routing, navigation, and maintaining link connectivity. The accuracy of the localization techniques for OIoUT greatly relies on the location of the anchors. Therefore, recently localization techniques for O-IoUT which optimize the anchor’s location are proposed. However, optimization of anchors location for all the smart objects in the network is not a useful solution. Indeed, in a network of densely populated smart objects, the data collected by some sensors are more valuable than the data collected from other sensors. Therefore, in this paper, we propose a three-dimensional accurate localization technique by optimizing the anchor’s location for a set of smart objects. Spectral graph partitioning is used to select the set of valuable</div><div>sensors.</div>


2021 ◽  
Vol 11 (15) ◽  
pp. 6810
Author(s):  
Corentin Coupry ◽  
Sylvain Noblecourt ◽  
Paul Richard ◽  
David Baudry ◽  
David Bigaud

In recent years, the use of digital twins (DT) to improve maintenance procedures has increased in various industrial sectors (e.g., manufacturing, energy industry, aerospace) but is more limited in the construction industry. However, the operation and maintenance (O&M) phase of a building’s life cycle is the most expensive. Smart buildings already use BIM (Building Information Modeling) for facility management, but they lack the predictive capabilities of DT. On the other hand, the use of extended reality (XR) technologies to improve maintenance operations has been a major topic of academic research in recent years, both through data display and remote collaboration. In this context, this paper focuses on reviewing projects using a combination of these technologies to improve maintenance operations in smart buildings. This review uses a combination of at least three of the terms “Digital Twin”, “Maintenance”, “BIM” and “Extended Reality”. Results show how a BIM can be used to create a DT and how this DT use combined with XR technologies can improve maintenance operations in a smart building. This paper also highlights the challenges for the correct implementation of a BIM-based DT combined with XR devices. An example of use is also proposed using a diagram of the possible interactions between the user, the DT and the application framework during maintenance operations.


Author(s):  
Bálint Joó ◽  
Mike A. Clark

The QUDA library for optimized lattice quantum chromodynamics using GPUs, combined with a high-level application framework such as the Chroma software system, provides a powerful tool for computing quark propagators, a key step in current calculations of hadron spectroscopy, nuclear structure, and nuclear forces. In this contribution we discuss our experiences, including performance and strong scaling of the QUDA library and Chroma on the Edge Cluster at Lawrence Livermore National Laboratory and on various clusters at Jefferson Lab. We highlight some scientific successes and consider future directions for graphics processing units in lattice quantum chromodynamics calculations.


Author(s):  
Peng Lu ◽  
Xiao Cong ◽  
Dongdai Zhou

Nowadays, E-learning system has been widely applied to practical teaching. It was favored by people for its characterized course arrangement and flexible learning schedule. However, the system does have some problems in the process of application such as the functions of single software are not diversified enough to satisfy the requirements in teaching completely. In order to cater more applications in the teaching process, it is necessary to integrate functions from different systems. But the difference in developing techniques and the inflexibility in design makes it difficult to implement. The major reason of these problems is the lack of fine software architecture. In this article, we build domain model and component model of E-learning system and components integration method on the basis of WebService. And we proposed an abstract framework of E-learning which could express the semantic relationship among components and realize high level reusable on the basis of informationized teaching mode. On this foundation, we form an E-learning oriented layering software architecture contain component library layer, application framework layer and application layer. Moreover, the system contains layer division multiplexing and was not built upon developing language and tools. Under the help of the software architecture, we could build characterized E-learning system flexibly like building blocks through framework selection, component assembling and replacement. In addition, we exemplify how to build concrete E-learning system on the basis of this software architecture.


Sign in / Sign up

Export Citation Format

Share Document