link connectivity
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 16)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Vol 13 (5) ◽  
pp. 37-56
Author(s):  
Dhirendra Kumar Sharma ◽  
Nitika Goenka

In the mobile ad hoc network (MANET) update of link connectivity is necessary to refresh the neighbor tables in data transfer. A existing hello process periodically exchanges the link connectivity information, which is not adequate for dynamic topology. Here, slow update of neighbour table entries causes link failures which affect performance parameter as packet drop, maximum delay, energy consumption, and reduced throughput. In the dynamic hello technique, new neighbour nodes and lost neighbour nodes are used to compute link change rate (LCR) and hello-interval/refresh rate (r). Exchange of link connectivity information at a fast rate consumes unnecessary bandwidth and energy. In MANET resource wastage can be controlled by avoiding the re-route discovery, frequent error notification, and local repair in the entire network. We are enhancing the existing hello process, which shows significant improvement in performance.


2021 ◽  
Vol 11 (5) ◽  
pp. 2413
Author(s):  
Zahid Khan ◽  
Anis Koubaa ◽  
Sangsha Fang ◽  
Mi Young Lee ◽  
Khan Muhammad

The reliability, scalability, and stability of routing schemes are open challenges in highly evolving vehicular ad hoc networks (VANETs). Cluster-based routing is an efficient solution to cope with the dynamic and inconsistent structure of VANETs. In this paper, we propose a cluster-based routing scheme (hereinafter referred to as connectivity-based clustering), where link connectivity is used as a metric for cluster formation and cluster head (CH) selection. Link connectivity is a function of vehicle density and transmission range in the proposed connectivity-based clustering scheme. Moreover, we used a heuristic approach of spectral clustering for the optimal number of cluster formation. Lastly, an appropriate vehicle is selected as a CH based on the maximum Eigen-centrality score. The simulation results show that the suggested connectivity-based clustering scheme performs well in the optimal number of cluster selections, strongly connected (STC) route selection, and route request messages (RRMs) in the discovery of a particular path to the destination. Thus, we conclude that link connectivity and the heuristic approach of spectral clustering are valuable additions to existing routing schemes for high evolving networks.


2019 ◽  
Author(s):  
Nasir Saeed ◽  
Mohamed-Slim Alouini ◽  
Tareq Y. Al-Naffouri

<div>Localization is a fundamental task for optical internet</div><div>of underwater things (O-IoUT) to enable various applications</div><div>such as data tagging, routing, navigation, and maintaining link connectivity. The accuracy of the localization techniques for OIoUT greatly relies on the location of the anchors. Therefore, recently localization techniques for O-IoUT which optimize the anchor’s location are proposed. However, optimization of anchors location for all the smart objects in the network is not a useful solution. Indeed, in a network of densely populated smart objects, the data collected by some sensors are more valuable than the data collected from other sensors. Therefore, in this paper, we propose a three-dimensional accurate localization technique by optimizing the anchor’s location for a set of smart objects. Spectral graph partitioning is used to select the set of valuable</div><div>sensors.</div>


2019 ◽  
Author(s):  
Nasir Saeed ◽  
Mohamed-Slim Alouini ◽  
Tareq Y. Al-Naffouri

<div>Localization is a fundamental task for optical internet</div><div>of underwater things (O-IoUT) to enable various applications</div><div>such as data tagging, routing, navigation, and maintaining link connectivity. The accuracy of the localization techniques for OIoUT greatly relies on the location of the anchors. Therefore, recently localization techniques for O-IoUT which optimize the anchor’s location are proposed. However, optimization of anchors location for all the smart objects in the network is not a useful solution. Indeed, in a network of densely populated smart objects, the data collected by some sensors are more valuable than the data collected from other sensors. Therefore, in this paper, we propose a three-dimensional accurate localization technique by optimizing the anchor’s location for a set of smart objects. Spectral graph partitioning is used to select the set of valuable</div><div>sensors.</div>


Sign in / Sign up

Export Citation Format

Share Document