Nanostructured Layered Materials as Novel Lubricant Additives for Tribological Applications

Author(s):  
Sangita Kumari ◽  
Ajay Chouhan ◽  
Om P. Khatri
Author(s):  
Yoichi Ishida ◽  
Hideki Ichinose ◽  
Yutaka Takahashi ◽  
Jin-yeh Wang

Layered materials draw attention in recent years in response to the world-wide drive to discover new functional materials. High-Tc superconducting oxide is one example. Internal interfaces in such layered materials differ significantly from those of cubic metals. They are often parallel to the layer of the neighboring crystals in sintered samples(layer plane boundary), while periodically ordered interfaces with the two neighboring crystals in mirror symmetry to each other are relatively rare. Consequently, the atomistic features of the interface differ significantly from those of cubic metals. In this paper grain boundaries in sintered high-Tc superconducting oxides, joined interfaces between engineering ceramics with metals, and polytype interfaces in vapor-deposited bicrystal are examined to collect atomic information of the interfaces in layered materials. The analysis proved that they are not neccessarily more complicated than that of simple grain boundaries in cubic metals. The interfaces are majorly layer plane type which is parallel to the compound layer. Secondly, chemical information is often available, which helps the interpretation of the interface atomic structure.


2003 ◽  
Author(s):  
C. T. Sun ◽  
K. J. Bowman ◽  
J. F. Doyle ◽  
H. Espinosa ◽  
K. P. Trumble

1991 ◽  
Vol 56 (12) ◽  
pp. 2859-2868 ◽  
Author(s):  
Jiří Votinský ◽  
Ludvík Beneš

A computational procedure has been suggested enabling estimates of the flexibility of individual layered materials from their crystallographical structure. The data about flexibility of layers have been obtained by calculation for compounds of the type Q2Y3 (Q = SbIII, BiIII; Y = Se-II, Te-II; space group of symmetry R3m), MPS3 (M = MnII, FeII, CoII, NiII, CdII,C2/m), TX2 (T = NbIV, TaIV, MoV; X = S-II, Se-II; P63/mmc), FeOCl (Pmnm), Zr(HPO4)2 (P21/n) and ROPO4 (R = VV, NbV, Mo; P4/n). The flexibility of the layers of these compounds increases in the order: Q2Y3 << MPS3 < TX2 < FeOCl = Zr(HPO4)2 < ROPO4. The same trend is observed for the ability of these compounds to form intercalates. In most of the structures given a distinct anisotropy of flexibility has been found by the calculation.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Wenfeng Zhao ◽  
Xiaowei Wang ◽  
Lizhe Ma ◽  
Xuanbo Wang ◽  
Weibin Wu ◽  
...  

Author(s):  
Priyanka Das ◽  
Sanjay K. Behura ◽  
Stephen A. McGill ◽  
Dharmaraj Raghavan ◽  
Alamgir Karim ◽  
...  

Friction ◽  
2021 ◽  
Author(s):  
Shaoqing Xue ◽  
Hanglin Li ◽  
Yumei Guo ◽  
Baohua Zhang ◽  
Jiusheng Li ◽  
...  

AbstractWater is as an economic, eco-friendly, and efficient lubricant that has gained widespread attention for manufacturing. Using graphene oxide (GO)-based materials can improve the lubricant efficacy of water lubrication due to their outstanding mechanical properties, water dispersibility, and broad application scenarios. In this review, we offer a brief introduction about the background of water lubrication and GO. Subsequently, the synthesis, structure, and lubrication theory of GO are analyzed. Particular attention is focused on the relationship between pH, concentration, and lubrication efficacy when discussing the tribology behaviors of pristine GO. By compounding or reacting GO with various modifiers, amounts of GO-composites are synthesized and applied as lubricant additives or into frictional pairs for different usage scenarios. These various strategies of GO-composite generate interesting effects on the tribology behaviors. Several application cases of GO-based materials are described in water lubrication, including metal processing and bio-lubrication. The advantages and drawbacks of GO-composites are then discussed. The development of GO-based materials for water lubrication is described including some challenges.


ACS Nano ◽  
2021 ◽  
Author(s):  
Giovanni Pizzi ◽  
Silvia Milana ◽  
Andrea C. Ferrari ◽  
Nicola Marzari ◽  
Marco Gibertini
Keyword(s):  

Author(s):  
Luojun Du ◽  
Tawfique Hasan ◽  
Andres Castellanos-Gomez ◽  
Gui-Bin Liu ◽  
Yugui Yao ◽  
...  

APL Materials ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 060905
Author(s):  
Yan Liang ◽  
Xuehan Zhou ◽  
Wen Li ◽  
Hailin Peng

Sign in / Sign up

Export Citation Format

Share Document