scholarly journals Water lubrication of graphene oxide-based materials

Friction ◽  
2021 ◽  
Author(s):  
Shaoqing Xue ◽  
Hanglin Li ◽  
Yumei Guo ◽  
Baohua Zhang ◽  
Jiusheng Li ◽  
...  

AbstractWater is as an economic, eco-friendly, and efficient lubricant that has gained widespread attention for manufacturing. Using graphene oxide (GO)-based materials can improve the lubricant efficacy of water lubrication due to their outstanding mechanical properties, water dispersibility, and broad application scenarios. In this review, we offer a brief introduction about the background of water lubrication and GO. Subsequently, the synthesis, structure, and lubrication theory of GO are analyzed. Particular attention is focused on the relationship between pH, concentration, and lubrication efficacy when discussing the tribology behaviors of pristine GO. By compounding or reacting GO with various modifiers, amounts of GO-composites are synthesized and applied as lubricant additives or into frictional pairs for different usage scenarios. These various strategies of GO-composite generate interesting effects on the tribology behaviors. Several application cases of GO-based materials are described in water lubrication, including metal processing and bio-lubrication. The advantages and drawbacks of GO-composites are then discussed. The development of GO-based materials for water lubrication is described including some challenges.

2019 ◽  
Vol 31 (5) ◽  
pp. 557-569 ◽  
Author(s):  
Tong Sun ◽  
Huawei Zou ◽  
Ya Zhou ◽  
Rui Li ◽  
Mei Liang ◽  
...  

In this article, two types of functional graphene oxide (GO) with amine-rich surface were synthesized through chemically grafting two different molecular chain length trifunctional poly(oxypropylene)amines T5000 and T403, which were named as T5000-GO and T403-GO, respectively. The functionalized GO was then added to epoxy (EP) resin. Fourier transform infrared spectra analysis confirmed successful chemical functionalization on GO. Both T403-GO and T5000-GO were tightly embedded in the EP, because the amine-rich surface of functionalized-GO could form covalent bonds with the EP matrix, thereby contributing to the enhancement of mechanical properties. Particularly, T5000-GO, which has longer grafting molecule chains, achieved better compatibility and dispersibility in the EP matrix, resulting in a better reinforcing efficiency in mechanical properties. For example, the T5000-GO/EP composites showed an incremental enhancement in tensile strength with increasing filler concentrations, whereas their T403-GO/EP counterparts failed to follow the same trend. Meanwhile, the T5000-GO/EP composites with only 0.1-wt% T5000-GO achieved a prominent increase in flexural strength (approximately 50%) and flexural modulus (approximately 26.8%), which were higher than those of T403-GO-filled counterparts. This work indicated that the compatibility and interphase between GO and EP could be designed by manipulating the length of grafting molecule chains, thereby providing a better understanding of the relationship between the structure and mechanical properties of the graphene/EP nanocomposites.


RSC Advances ◽  
2018 ◽  
Vol 8 (18) ◽  
pp. 9677-9684 ◽  
Author(s):  
Koji Matsuura ◽  
Yuki Umahara ◽  
Kazuma Gotoh ◽  
Yuko Hoshijima ◽  
Hiroyuki Ishida

In order to determine the molecular interaction to improve the mechanical properties of graphene oxide (GO)–epoxy resin composites, we investigated the relationship between GO oxidation properties and the tensile strength of the epoxy resin.


2018 ◽  
Vol 69 (05) ◽  
pp. 381-389
Author(s):  
MENGÜÇ GAMZE SÜPÜREN ◽  
TEMEL EMRAH ◽  
BOZDOĞAN FARUK

This study was designed to explore the relationship between sunlight exposure and the mechanical properties of paragliding fabrics which have different colors, densities, yarn counts, and coating materials. This study exposed 5 different colors of paragliding fabrics (red, turquoise, dark blue, orange, and white) to intense sunlight for 150 hours during the summer from 9:00 a.m. to 3:00 p.m. for 5 days a week for 5 weeks. Before and after the UV radiation aging process, the air permeability, tensile strength, tear strength, and bursting strength tests were performed. Test results were also evaluated using statistical methods. According to the results, the fading of the turquoise fabric was found to be the highest among the studied fabrics. It was determined that there is a significant decrease in the mechanical properties of the fabrics after sunlight exposure. After aging, the fabrics become considerably weaker in the case of mechanical properties due to the degradation in both the dyestuff and macromolecular structure of the fiber


Sign in / Sign up

Export Citation Format

Share Document